Algèbre, Géométrie et Topologie
Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem
Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1009-1026.

Un résultat de G. Walker et R. Wood dit que l’espace des indécomposables en degré 2n-1-n de l’algèbre polynômiale 𝔽2[x1,...,xn], considérée comme module sur l’algèbre de Steenrod modulo 2, est isomorphe à la représentation de Steinberg de GLn(𝔽2). Dans ce travail, on cherche à généraliser ce résultat à tous les corps finis. Pour ce faire, on étudie une famille d’anneaux quotients finis Rn,k, k*, de 𝔽q[x1,...,xn], où chaque Rn,k est défini comme quotient de l’anneau de Stanley–Reisner d’un complexe de matroïde. On montre aussi en utilisant un variant de Rn,k que la dimension de l’espace des indécomposables de 𝔽q[x1,...,xn] en degré qn-1-n est égale à celle d’une représentation cuspidale complexe de GLn(𝔽q), à savoir (q-1)(q2-1)(qn-1-1).

Sur le corps 𝔽2, on établit une décomposition du facteur de Steinberg de Rn,2 en somme directe de suspensions de modules de Brown–Gitler. Ceci suggère une décomposition du facteur stable de Steinberg de la réalisation topologique de Rn,2 en bouquet de suspensions de spectres de Brown–Gitler.

A result of G. Walker and R. Wood states that the space of indecomposable elements in degree 2n-1-n of the polynomial algebra 𝔽2[x1,...,xn], considered as a module over the mod 2 Steenrod algebra, is isomorphic to the Steinberg representation of GLn(𝔽2). We generalize this result to all finite fields by studying a family of finite quotient rings Rn,k, k*, of 𝔽q[x1,...,xn], where each Rn,k is defined as a quotient of the Stanley–Reisner ring of a matroid complex. By considering a variant of Rn,k, we also show that the space of indecomposable elements of 𝔽q[x1,...,xn] in degree qn-1-n has dimension equal to that of a complex cuspidal representation of GLn(𝔽q), that is (q-1)(q2-1)(qn-1-1).

Over the field 𝔽2, we also establish a decomposition of the Steinberg summand of Rn,2 into a direct sum of suspensions of Brown–Gitler modules. The module Rn,2 can be realized as the mod 2 cohomlogy of a topological space and the result suggests that the Steinberg summand of this space admits a stable decomposition into a wedge of suspensions of Brown–Gitler spectra.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.359
Classification : 55S10, 55P42, 05E45
Hai, Nguyen Dang Ho 1

1 Department of Mathematics, College of Sciences, University of Hue, Vietnam
@article{CRMATH_2022__360_G9_1009_0,
     author = {Hai, Nguyen Dang Ho},
     title = {Stanley{\textendash}Reisner rings and the occurrence of the {Steinberg} representation in the hit problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1009--1026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G9},
     year = {2022},
     doi = {10.5802/crmath.359},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.359/}
}
TY  - JOUR
AU  - Hai, Nguyen Dang Ho
TI  - Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1009
EP  - 1026
VL  - 360
IS  - G9
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.359/
DO  - 10.5802/crmath.359
LA  - en
ID  - CRMATH_2022__360_G9_1009_0
ER  - 
%0 Journal Article
%A Hai, Nguyen Dang Ho
%T Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem
%J Comptes Rendus. Mathématique
%D 2022
%P 1009-1026
%V 360
%N G9
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.359/
%R 10.5802/crmath.359
%G en
%F CRMATH_2022__360_G9_1009_0
Hai, Nguyen Dang Ho. Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1009-1026. doi : 10.5802/crmath.359. https://www.numdam.org/articles/10.5802/crmath.359/

[1] Björner, Anders Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math., Volume 52 (1984) no. 3, pp. 173-212 | DOI | MR | Zbl

[2] Björner, Anders The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia of Mathematics and Its Applications), Volume 40, Cambridge Univ. Press, 1992, pp. 226-283 | DOI | MR | Zbl

[3] Brown, Edgar H. Jr.; Gitler, Samuel A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology, Volume 12 (1973), pp. 283-295 | DOI | MR | Zbl

[4] Davis, Michael W.; Januszkiewicz, Tadeusz Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., Volume 62 (1991) no. 2, pp. 417-451 | MR | Zbl

[5] Dickson, Leonard E. A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911) no. 1, pp. 75-98 | DOI | MR | Zbl

[6] Inoue, Masateru 𝒜-generators of the cohomology of the Steinberg summand M(n), Recent progress in homotopy theory (Baltimore, MD, 2000) (Contemporary Mathematics), Volume 293, American Mathematical Society, 2000, pp. 125-139 | DOI | MR | Zbl

[7] Kuhn, Nicholas J.; Mitchell, Stephen A. The multiplicity of the Steinberg representation of GLnFq in the symmetric algebra, Proc. Amer. Math. Soc., Volume 96 (1986) no. 1, pp. 1-6 | MR | Zbl

[8] Lannes, Jean; Zarati, Saïd Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987) no. 1, pp. 25-59 | DOI | Zbl

[9] Lusztig, George The discrete series of GLn over a finite field, Annals of Mathematics Studies, 84, Princeton University Press; University of Tokyo Press, 1974 | Zbl

[10] Meyer, Dagmar M.; Smith, Larry Poincaré duality algebras, Macaulay’s dual systems, and Steenrod operations, Cambridge Tracts in Mathematics, 167, Cambridge University Press, 2005 | DOI | Zbl

[11] Minh, Pham Anh; Walker, Grant Linking first occurrence polynomials over 𝔽p by Steenrod operations, Algebr. Geom. Topol., Volume 2 (2002), pp. 563-590 | DOI | MR | Zbl

[12] Mitchell, Stephen A. Finite complexes with A(n)-free cohomology, Topology, Volume 24 (1985) no. 2, pp. 227-246 | DOI | MR | Zbl

[13] Mitchell, Stephen A.; Priddy, Stewart B. Stable splittings derived from the Steinberg module, Topology, Volume 22 (1983) no. 3, pp. 285-298 | DOI | MR | Zbl

[14] Mui, Huynh Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975) no. 3, pp. 319-369 | MR | Zbl

[15] Oxley, James Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, 2011 | DOI | Zbl

[16] Quillen, Daniel Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math., Volume 28 (1978) no. 2, pp. 101-128 | DOI | MR | Zbl

[17] Reisner, Gerald Allen Cohen–Macaulay quotients of polynomial rings, Adv. Math., Volume 21 (1976) no. 1, pp. 30-49 | DOI | MR | Zbl

[18] Smith, Larry An algebraic introduction to the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology (Hubbuck, John, ed.) (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications, 2007, pp. 327-348 | MR | Zbl

[19] Solomon, Louis The Steinberg character of a finite group with BN-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 213-221 | Zbl

[20] Stanley, Richard P. Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser, 1996 | Zbl

[21] Steinberg, Robert Prime power representations of finite linear groups, Canad. J. Math., Volume 8 (1956), pp. 580-591 | DOI | MR | Zbl

[22] Wachs, Michelle L. Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society; Institute for Advanced Study, 2007, pp. 497-615 | DOI | MR | Zbl

[23] Walker, Grant; Wood, Reginald M. W. Young tableaux and the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications (2007), pp. 379-397 | MR | Zbl

[24] Walker, Grant; Wood, Reginald M. W. Polynomials and the mod2 Steenrod algebra. Vol. 2. Representations of GL(n,𝔽2), London Mathematical Society Lecture Note Series, 442, Cambridge University Press, 2018 | Zbl

[25] Walker, Grant; Wood, Reginald M. W. Polynomials and the mod2 Steenrod algebra. Vol. 1. The Peterson hit problem, London Mathematical Society Lecture Note Series, 441, Cambridge University Press, 2018 | Zbl

[26] Wood, Reginald M. W. Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989) no. 2, pp. 307-309 | DOI | MR | Zbl

Cité par Sources :