Un résultat de G. Walker et R. Wood dit que l’espace des indécomposables en degré
Sur le corps
A result of G. Walker and R. Wood states that the space of indecomposable elements in degree
Over the field
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G9_1009_0, author = {Hai, Nguyen Dang Ho}, title = {Stanley{\textendash}Reisner rings and the occurrence of the {Steinberg} representation in the hit problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1009--1026}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G9}, year = {2022}, doi = {10.5802/crmath.359}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.359/} }
TY - JOUR AU - Hai, Nguyen Dang Ho TI - Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem JO - Comptes Rendus. Mathématique PY - 2022 SP - 1009 EP - 1026 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.359/ DO - 10.5802/crmath.359 LA - en ID - CRMATH_2022__360_G9_1009_0 ER -
%0 Journal Article %A Hai, Nguyen Dang Ho %T Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem %J Comptes Rendus. Mathématique %D 2022 %P 1009-1026 %V 360 %N G9 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.359/ %R 10.5802/crmath.359 %G en %F CRMATH_2022__360_G9_1009_0
Hai, Nguyen Dang Ho. Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1009-1026. doi : 10.5802/crmath.359. https://www.numdam.org/articles/10.5802/crmath.359/
[1] Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math., Volume 52 (1984) no. 3, pp. 173-212 | DOI | MR | Zbl
[2] The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia of Mathematics and Its Applications), Volume 40, Cambridge Univ. Press, 1992, pp. 226-283 | DOI | MR | Zbl
[3] A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology, Volume 12 (1973), pp. 283-295 | DOI | MR | Zbl
[4] Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., Volume 62 (1991) no. 2, pp. 417-451 | MR | Zbl
[5] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911) no. 1, pp. 75-98 | DOI | MR | Zbl
[6]
[7] The multiplicity of the Steinberg representation of
[8] Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987) no. 1, pp. 25-59 | DOI | Zbl
[9] The discrete series of
[10] Poincaré duality algebras, Macaulay’s dual systems, and Steenrod operations, Cambridge Tracts in Mathematics, 167, Cambridge University Press, 2005 | DOI | Zbl
[11] Linking first occurrence polynomials over
[12] Finite complexes with
[13] Stable splittings derived from the Steinberg module, Topology, Volume 22 (1983) no. 3, pp. 285-298 | DOI | MR | Zbl
[14] Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975) no. 3, pp. 319-369 | MR | Zbl
[15] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, 2011 | DOI | Zbl
[16] Homotopy properties of the poset of nontrivial
[17] Cohen–Macaulay quotients of polynomial rings, Adv. Math., Volume 21 (1976) no. 1, pp. 30-49 | DOI | MR | Zbl
[18] An algebraic introduction to the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology (Hubbuck, John, ed.) (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications, 2007, pp. 327-348 | MR | Zbl
[19] The Steinberg character of a finite group with
[20] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser, 1996 | Zbl
[21] Prime power representations of finite linear groups, Canad. J. Math., Volume 8 (1956), pp. 580-591 | DOI | MR | Zbl
[22] Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society; Institute for Advanced Study, 2007, pp. 497-615 | DOI | MR | Zbl
[23] Young tableaux and the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications (2007), pp. 379-397 | MR | Zbl
[24] Polynomials and the
[25] Polynomials and the
[26] Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989) no. 2, pp. 307-309 | DOI | MR | Zbl
Cité par Sources :