Un résultat de G. Walker et R. Wood dit que l’espace des indécomposables en degré de l’algèbre polynômiale , considérée comme module sur l’algèbre de Steenrod modulo 2, est isomorphe à la représentation de Steinberg de . Dans ce travail, on cherche à généraliser ce résultat à tous les corps finis. Pour ce faire, on étudie une famille d’anneaux quotients finis , , de , où chaque est défini comme quotient de l’anneau de Stanley–Reisner d’un complexe de matroïde. On montre aussi en utilisant un variant de que la dimension de l’espace des indécomposables de en degré est égale à celle d’une représentation cuspidale complexe de , à savoir .
Sur le corps , on établit une décomposition du facteur de Steinberg de en somme directe de suspensions de modules de Brown–Gitler. Ceci suggère une décomposition du facteur stable de Steinberg de la réalisation topologique de en bouquet de suspensions de spectres de Brown–Gitler.
A result of G. Walker and R. Wood states that the space of indecomposable elements in degree of the polynomial algebra , considered as a module over the mod 2 Steenrod algebra, is isomorphic to the Steinberg representation of . We generalize this result to all finite fields by studying a family of finite quotient rings , , of , where each is defined as a quotient of the Stanley–Reisner ring of a matroid complex. By considering a variant of , we also show that the space of indecomposable elements of in degree has dimension equal to that of a complex cuspidal representation of , that is .
Over the field , we also establish a decomposition of the Steinberg summand of into a direct sum of suspensions of Brown–Gitler modules. The module can be realized as the mod cohomlogy of a topological space and the result suggests that the Steinberg summand of this space admits a stable decomposition into a wedge of suspensions of Brown–Gitler spectra.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G9_1009_0, author = {Hai, Nguyen Dang Ho}, title = {Stanley{\textendash}Reisner rings and the occurrence of the {Steinberg} representation in the hit problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1009--1026}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G9}, year = {2022}, doi = {10.5802/crmath.359}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.359/} }
TY - JOUR AU - Hai, Nguyen Dang Ho TI - Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem JO - Comptes Rendus. Mathématique PY - 2022 SP - 1009 EP - 1026 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.359/ DO - 10.5802/crmath.359 LA - en ID - CRMATH_2022__360_G9_1009_0 ER -
%0 Journal Article %A Hai, Nguyen Dang Ho %T Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem %J Comptes Rendus. Mathématique %D 2022 %P 1009-1026 %V 360 %N G9 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.359/ %R 10.5802/crmath.359 %G en %F CRMATH_2022__360_G9_1009_0
Hai, Nguyen Dang Ho. Stanley–Reisner rings and the occurrence of the Steinberg representation in the hit problem. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1009-1026. doi : 10.5802/crmath.359. http://www.numdam.org/articles/10.5802/crmath.359/
[1] Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math., Volume 52 (1984) no. 3, pp. 173-212 | DOI | MR | Zbl
[2] The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia of Mathematics and Its Applications), Volume 40, Cambridge Univ. Press, 1992, pp. 226-283 | DOI | MR | Zbl
[3] A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology, Volume 12 (1973), pp. 283-295 | DOI | MR | Zbl
[4] Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., Volume 62 (1991) no. 2, pp. 417-451 | MR | Zbl
[5] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911) no. 1, pp. 75-98 | DOI | MR | Zbl
[6] -generators of the cohomology of the Steinberg summand , Recent progress in homotopy theory (Baltimore, MD, 2000) (Contemporary Mathematics), Volume 293, American Mathematical Society, 2000, pp. 125-139 | DOI | MR | Zbl
[7] The multiplicity of the Steinberg representation of in the symmetric algebra, Proc. Amer. Math. Soc., Volume 96 (1986) no. 1, pp. 1-6 | MR | Zbl
[8] Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987) no. 1, pp. 25-59 | DOI | Zbl
[9] The discrete series of over a finite field, Annals of Mathematics Studies, 84, Princeton University Press; University of Tokyo Press, 1974 | Zbl
[10] Poincaré duality algebras, Macaulay’s dual systems, and Steenrod operations, Cambridge Tracts in Mathematics, 167, Cambridge University Press, 2005 | DOI | Zbl
[11] Linking first occurrence polynomials over by Steenrod operations, Algebr. Geom. Topol., Volume 2 (2002), pp. 563-590 | DOI | MR | Zbl
[12] Finite complexes with -free cohomology, Topology, Volume 24 (1985) no. 2, pp. 227-246 | DOI | MR | Zbl
[13] Stable splittings derived from the Steinberg module, Topology, Volume 22 (1983) no. 3, pp. 285-298 | DOI | MR | Zbl
[14] Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975) no. 3, pp. 319-369 | MR | Zbl
[15] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, 2011 | DOI | Zbl
[16] Homotopy properties of the poset of nontrivial -subgroups of a group, Adv. Math., Volume 28 (1978) no. 2, pp. 101-128 | DOI | MR | Zbl
[17] Cohen–Macaulay quotients of polynomial rings, Adv. Math., Volume 21 (1976) no. 1, pp. 30-49 | DOI | MR | Zbl
[18] An algebraic introduction to the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology (Hubbuck, John, ed.) (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications, 2007, pp. 327-348 | MR | Zbl
[19] The Steinberg character of a finite group with -pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 213-221 | Zbl
[20] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser, 1996 | Zbl
[21] Prime power representations of finite linear groups, Canad. J. Math., Volume 8 (1956), pp. 580-591 | DOI | MR | Zbl
[22] Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society; Institute for Advanced Study, 2007, pp. 497-615 | DOI | MR | Zbl
[23] Young tableaux and the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications (2007), pp. 379-397 | MR | Zbl
[24] Polynomials and the Steenrod algebra. Vol. 2. Representations of , London Mathematical Society Lecture Note Series, 442, Cambridge University Press, 2018 | Zbl
[25] Polynomials and the Steenrod algebra. Vol. 1. The Peterson hit problem, London Mathematical Society Lecture Note Series, 441, Cambridge University Press, 2018 | Zbl
[26] Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989) no. 2, pp. 307-309 | DOI | MR | Zbl
Cité par Sources :