Nous montrons que la fonction de Christoffel empirique associée à un échantillon fini de points peut fournir un outil simple pour la classification supervisée en analyse de données, avec de bonnes propriétés de généralisation.
We show that the empirical Christoffel function associated with a cloud of finitely many points sampled from a distribution, can provide a simple tool for supervised classification in data analysis, with good generalization properties.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G8_919_0, author = {Lasserre, Jean B.}, title = {On the {Christoffel} function and classification in data analysis}, journal = {Comptes Rendus. Math\'ematique}, pages = {919--928}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G8}, year = {2022}, doi = {10.5802/crmath.358}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.358/} }
TY - JOUR AU - Lasserre, Jean B. TI - On the Christoffel function and classification in data analysis JO - Comptes Rendus. Mathématique PY - 2022 SP - 919 EP - 928 VL - 360 IS - G8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.358/ DO - 10.5802/crmath.358 LA - en ID - CRMATH_2022__360_G8_919_0 ER -
%0 Journal Article %A Lasserre, Jean B. %T On the Christoffel function and classification in data analysis %J Comptes Rendus. Mathématique %D 2022 %P 919-928 %V 360 %N G8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.358/ %R 10.5802/crmath.358 %G en %F CRMATH_2022__360_G8_919_0
Lasserre, Jean B. On the Christoffel function and classification in data analysis. Comptes Rendus. Mathématique, Tome 360 (2022) no. G8, pp. 919-928. doi : 10.5802/crmath.358. http://www.numdam.org/articles/10.5802/crmath.358/
[1] Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2019 | DOI
[2] Sorting out typicality via the inverse moment matrix SOS polynomial, Advances in Neural Information Processing Systems, Curran Associates, Inc. (2016), pp. 190-198
[3] The empirical Christoffel function with applications in data analysis, Adv. Comput. Math., Volume 45 (2019) no. 3, pp. 1439-1468 | DOI | MR | Zbl
[4] The Christoffel–Darboux Kernel for Data Analysis, Cambridge Monographs on Applied and Computational Mathematics, 38, Cambridge University Press, 2022 | DOI | Zbl
[5] Semi-algebraic approximation using Christoffel–Darboux kernel, Constr. Approx., Volume 54 (2021) no. 3, pp. 391-429 | DOI | MR | Zbl
Cité par Sources :