In this short note we capitalize on and complete our previous results on the regularity of the homogenized coefficients for Bernoulli perturbations by addressing the case of the Poisson point process, for which the crucial uniform local finiteness assumption fails. In particular, we strengthen the qualitative regularity result first obtained in this setting by the first author to Gevrey regularity of order 2. The new ingredient is a fine application of properties of Poisson point processes, in a form recently used by Giunti, Gu, Mourrat, and Nitzschner.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G8_909_0, author = {Duerinckx, Mitia and Gloria, Antoine}, title = {A short proof of {Gevrey} regularity for homogenized coefficients of the {Poisson} point process}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--918}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G8}, year = {2022}, doi = {10.5802/crmath.354}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.354/} }
TY - JOUR AU - Duerinckx, Mitia AU - Gloria, Antoine TI - A short proof of Gevrey regularity for homogenized coefficients of the Poisson point process JO - Comptes Rendus. Mathématique PY - 2022 SP - 909 EP - 918 VL - 360 IS - G8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.354/ DO - 10.5802/crmath.354 LA - en ID - CRMATH_2022__360_G8_909_0 ER -
%0 Journal Article %A Duerinckx, Mitia %A Gloria, Antoine %T A short proof of Gevrey regularity for homogenized coefficients of the Poisson point process %J Comptes Rendus. Mathématique %D 2022 %P 909-918 %V 360 %N G8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.354/ %R 10.5802/crmath.354 %G en %F CRMATH_2022__360_G8_909_0
Duerinckx, Mitia; Gloria, Antoine. A short proof of Gevrey regularity for homogenized coefficients of the Poisson point process. Comptes Rendus. Mathématique, Tome 360 (2022) no. G8, pp. 909-918. doi : 10.5802/crmath.354. http://www.numdam.org/articles/10.5802/crmath.354/
[1] A numerical approach related to defect-type theories for some weakly random problems in homogenization, Multiscale Model. Simul., Volume 9 (2011) no. 2, pp. 513-544 | DOI | MR | Zbl
[2] Elements of mathematical foundations for numerical approaches for weakly random homogenization problems, Commun. Comput. Phys., Volume 11 (2012) no. 4, pp. 1103-1143 | DOI | MR | Zbl
[3] Topics in the Mathematics of Disordered Media, Ph. D. Thesis, Université Libre de Bruxelles & Université Pierre et Marie Curie (2017) | Numdam
[4] Analyticity of homogenized coefficients under Bernoulli perturbations and the Clausius-Mossotti formulas, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 1, pp. 297-361 | DOI | MR | Zbl
[5] Quantitative homogenization of interacting particle systems (2011) | arXiv
[6] Smoothness of the diffusion coefficients for particle systems in continuous space (2021) | arXiv
[7] Reduction in the resonance error in numerical homogenization II: Correctors and extrapolation, Found. Comput. Math., Volume 16 (2016) no. 1, pp. 217-296 | DOI | MR | Zbl
[8] Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc., Volume 19 (2017) no. 11, pp. 3489-3548 | DOI | MR | Zbl
[9] Lectures on the Poisson process, Institute of Mathematical Statistics Textbooks, 7, Cambridge University Press, 2018
[10] First-order expansion of homogenized coefficients under Bernoulli perturbations, J. Math. Pures Appl., Volume 103 (2015) no. 1, pp. 68-101 | DOI | MR | Zbl
[11] Random heterogeneous materials. Microstructure and macroscopic properties, Interdisciplinary Applied Mathematics, 16, Springer, 2002 | DOI
Cité par Sources :