We consider the space of meromorphic functions in the unit disk and show that there exists a dense -subset of functions having universal radial limits. Our results complement known statements about holomorphic functions and further imply the existence of meromorphic functions having maximal cluster sets along certain subsets of .
Accepté le :
Publié le :
@article{CRMATH_2022__360_G8_893_0, author = {Meyrath, Thierry}, title = {Universal radial limits of meromorphic functions in the unit disk}, journal = {Comptes Rendus. Math\'ematique}, pages = {893--898}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G8}, year = {2022}, doi = {10.5802/crmath.352}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.352/} }
TY - JOUR AU - Meyrath, Thierry TI - Universal radial limits of meromorphic functions in the unit disk JO - Comptes Rendus. Mathématique PY - 2022 SP - 893 EP - 898 VL - 360 IS - G8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.352/ DO - 10.5802/crmath.352 LA - en ID - CRMATH_2022__360_G8_893_0 ER -
%0 Journal Article %A Meyrath, Thierry %T Universal radial limits of meromorphic functions in the unit disk %J Comptes Rendus. Mathématique %D 2022 %P 893-898 %V 360 %N G8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.352/ %R 10.5802/crmath.352 %G en %F CRMATH_2022__360_G8_893_0
Meyrath, Thierry. Universal radial limits of meromorphic functions in the unit disk. Comptes Rendus. Mathématique, Tome 360 (2022) no. G8, pp. 893-898. doi : 10.5802/crmath.352. http://www.numdam.org/articles/10.5802/crmath.352/
[1] Universal radial limits of holomorphic functions, Glasg. Math. J., Volume 47 (2005) no. 2, pp. 261-267 | DOI | MR | Zbl
[2] Maximal cluster sets along arbitrary curves, J. Approx. Theory, Volume 129 (2004) no. 2, pp. 207-216 | DOI | MR | Zbl
[3] Simultaneously maximal radial cluster sets, J. Approx. Theory, Volume 135 (2005) no. 1, pp. 114-124 | DOI | MR | Zbl
[4] Holomorphic functions with universal boundary behaviour, J. Approx. Theory, Volume 254 (2020), 105391, 19 pages | MR | Zbl
[5] On the boundary behaviour of derivatives of functions in the disc algebra, C. R. Acad. Sci. Paris, Volume 356 (2018) no. 7, pp. 732-736 | DOI | MR | Zbl
[6] Boundary theorems for a function meromorphic in the unit circle, Acta Math. (1952) no. 57, pp. 86-146 | MR | Zbl
[7] Functions of one complex variable I, Graduate Texts in Mathematics, 11, Springer, 1978 | DOI
[8] Extension à la dimension d’un théorème de Ortel et Schneider, Math. Z., Volume 206 (1991) no. 1, pp. 71-80 | DOI | Zbl
[9] Possibility of uniform rational approximation in the spherical metric, Can. J. Math., Volume 28 (1976), pp. 112-115 | DOI | MR | Zbl
[10] Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, 1964
[11] Sur certaines singularités des fonctions analytiques uniformes, Fundam. Math., Volume 21 (1933), pp. 276-294 | DOI
[12] Meromorphic functions with small characteristic and no asymptotic values, Mich. Math. J., Volume 8 (1961), pp. 177-185
[13] Compositionally universal meromorphic functions, Complex Var. Elliptic Equ., Volume 64 (2019) no. 9, pp. 1534-1545
[14] Contributions to the theory of meromorphic functions in the unit circle, J. Fac. Sci., Hokkaido Univ., Ser. I, Volume 7 (1939), pp. 149-159
[15] Analytic capacity and rational approximation, Lecture Notes in Mathematics, 50, Springer, 1968
Cité par Sources :