Théorie des nombres
On a conjecture of Erdős
Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 971-974.

In this note, we confirm an old conjecture of Erdős.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.345
Classification : 11A41, 11A67
Chen, Yong-Gao 1 ; Ding, Yuchen 2

1 School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, People’s Republic of China
2 School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China
@article{CRMATH_2022__360_G9_971_0,
     author = {Chen, Yong-Gao and Ding, Yuchen},
     title = {On a conjecture of {Erd\H{o}s}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {971--974},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G9},
     year = {2022},
     doi = {10.5802/crmath.345},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.345/}
}
TY  - JOUR
AU  - Chen, Yong-Gao
AU  - Ding, Yuchen
TI  - On a conjecture of Erdős
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 971
EP  - 974
VL  - 360
IS  - G9
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.345/
DO  - 10.5802/crmath.345
LA  - en
ID  - CRMATH_2022__360_G9_971_0
ER  - 
%0 Journal Article
%A Chen, Yong-Gao
%A Ding, Yuchen
%T On a conjecture of Erdős
%J Comptes Rendus. Mathématique
%D 2022
%P 971-974
%V 360
%N G9
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.345/
%R 10.5802/crmath.345
%G en
%F CRMATH_2022__360_G9_971_0
Chen, Yong-Gao; Ding, Yuchen. On a conjecture of Erdős. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 971-974. doi : 10.5802/crmath.345. http://www.numdam.org/articles/10.5802/crmath.345/

[1] Chen, Yong-Gao Romanoff theorem in a sparse set, Sci. China, Math., Volume 53 (2010) no. 9, pp. 2195-2202 | DOI | MR | Zbl

[2] Chen, Yong-Gao; Sun, Xue-Gong On Romanoff’s constant, J. Number Theory, Volume 106 (2004) no. 2, pp. 275-284 | DOI | MR | Zbl

[3] Ding, Yuchen Extending an Erdős result on a Romanov type problem, Arch. Math., Volume 118 (2022), pp. 587-592 | DOI | MR | Zbl

[4] Ding, Yuchen; Zhou, G.-L. Some application of the admissible sets (preprint)

[5] Erdős, Pál On integers of the form 2 k +p and some related problems, Summa Brasil. Math., Volume 2 (1950), pp. 113-123 | MR | Zbl

[6] Granville, Andrew Primes in intervals of bounded length, Bull. Am. Math. Soc., Volume 52 (2015) no. 2, pp. 171-222 | DOI | MR | Zbl

[7] Maynard, James Small gaps between primes, Ann. Math., Volume 181 (2015) no. 1, pp. 383-413 | DOI | MR | Zbl

[8] Polymath, D. H. J. Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci., Volume 1 (2014), 12 | MR | Zbl

[9] Romanoff, Nikolaĭ P. Über einige Sätze der additiven Zahlentheorie, Math. Ann., Volume 109 (1934), pp. 668-678 | DOI | Zbl

Cité par Sources :