Équations aux dérivées partielles
A note on the global regularity results for strongly nonhomogeneous p,q-fractional problems and applications
Comptes Rendus. Mathématique, Tome 360 (2022) no. G7, pp. 809-817.

Dans cette note, nous présentons de nouveaux résultats de régularité Höldérienne des solutions faibles d’une classe de problèmes faisant intervenir des opérateurs de diffusion fractionnaire non linéaires et non homogènes de la forme (-Δ) p s 1 +(-Δ) q s 2 avec s 2 ,s 1 (0,1) et 1<p,q<. Précisément, nous obtenons des résultats de régularité intérieure et près du bord pour les solutions faibles de ces problèmes alors que la nonlinéarité du membre de droite est de croissance critique au sens de l’injection de Sobolev. Ce résultat étend les principaux résultats de régularité intérieure de [1] où le cas de l’opérateur homogène (-Δ) p s 1 est étudié, améliore de façon optimale et complète ceux de [8].

Nous établissons par ailleurs un lemme de Hopf et un principe de comparaison fort pour cette classe de problèmes. Nous appliquons ensuite ces résultats pour démontrer la propriété que les minimiseurs locaux de l’énergie associée dans C α (Ω ¯) avec α(0,s 1 ) sont aussi minimiseurs locaux dans W 0 s 1 ,p (Ω) dans l’esprit de l’article pionnier [2]. Ceci conduit à des nouveaux résultats de muliplicité de solutions pour ces problèmes non locaux et fortement non homogènes.

In this article, we communicate with the glimpse of the proofs of new global regularity results for weak solutions to a class of problems involving fractional (p,q)-Laplacian, denoted by (-Δ) p s 1 +(-Δ) q s 2 , for s 2 ,s 1 (0,1) and 1<p,q<. We also obtain the boundary Hölder continuity results for the weak solutions to the corresponding problems involving at most critical growth nonlinearities. These results are almost optimal. Moreover, we establish new Hopf type maximum principle and strong comparison principle. As an application to these new results, we prove the Sobolev versus Hölder minimizer type result, which provides the multiplicity of solutions in the spirit of seminal work [2].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.344
Classification : 35J60, 35R11, 35B45, 35D30
Giacomoni, Jacques 1 ; Kumar, Deepak 2 ; Sreenadh, Konijeti 2

1 Université de Pau et des Pays de l’Adour, LMAP (UMR E2S-UPPA CNRS 5142), Bat. IPRA, Avenue de l’Université F-64013 Pau, France
2 Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khaz, New Delhi-110016, India
@article{CRMATH_2022__360_G7_809_0,
     author = {Giacomoni, Jacques and Kumar, Deepak and Sreenadh, Konijeti},
     title = {A note on the global regularity results for strongly nonhomogeneous $p,q$-fractional problems and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {809--817},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G7},
     year = {2022},
     doi = {10.5802/crmath.344},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.344/}
}
TY  - JOUR
AU  - Giacomoni, Jacques
AU  - Kumar, Deepak
AU  - Sreenadh, Konijeti
TI  - A note on the global regularity results for strongly nonhomogeneous $p,q$-fractional problems and applications
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 809
EP  - 817
VL  - 360
IS  - G7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.344/
DO  - 10.5802/crmath.344
LA  - en
ID  - CRMATH_2022__360_G7_809_0
ER  - 
%0 Journal Article
%A Giacomoni, Jacques
%A Kumar, Deepak
%A Sreenadh, Konijeti
%T A note on the global regularity results for strongly nonhomogeneous $p,q$-fractional problems and applications
%J Comptes Rendus. Mathématique
%D 2022
%P 809-817
%V 360
%N G7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.344/
%R 10.5802/crmath.344
%G en
%F CRMATH_2022__360_G7_809_0
Giacomoni, Jacques; Kumar, Deepak; Sreenadh, Konijeti. A note on the global regularity results for strongly nonhomogeneous $p,q$-fractional problems and applications. Comptes Rendus. Mathématique, Tome 360 (2022) no. G7, pp. 809-817. doi : 10.5802/crmath.344. http://www.numdam.org/articles/10.5802/crmath.344/

[1] Brasco, Lorenzo; Lindgren, Erik; Schikorra, Armin Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case, Adv. Math., Volume 338 (2018), pp. 782-846 | DOI | Zbl

[2] Brézis, Haïm; Nirenberg, Louis H 1 versus C 1 local minimizers, C. R. Math. Acad. Sci. Paris, Volume 317 (1993) no. 5, pp. 465-472 | MR | Zbl

[3] Chen, Wenjing; Mosconi, Sunra; Squassina, Marco Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal., Volume 275 (2018) no. 11, pp. 3065-3114 | DOI | MR | Zbl

[4] Del Pezzo, Leandro M.; Quaas, Alexander A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian, J. Differ. Equations, Volume 263 (2017) no. 1, pp. 765-778 | DOI | MR | Zbl

[5] Düzgün, Fatma Gamze; Iannizzotto, Antonio Three nontrivial solutions for nonlinear fractional Laplacian equations, Adv. Nonlinear Anal., Volume 7 (2018) no. 2, pp. 211-226 | DOI | MR | Zbl

[6] Giacomoni, Jacques; Kumar, Deepak; Sreenadh, Konijeti Interior and boundary regularity results for strongly nonhomogeneous p,q-fractional problems, Adv. Calc. Var. (2021) | DOI

[7] Giacomoni, Jacques; Kumar, Deepak; Sreenadh, Konijeti Global regularity results for non-homogeneous growth fractional problems, J. Geom. Anal., Volume 32 (2022) no. 1, 36, 41 pages | DOI | MR | Zbl

[8] Goel, Divya; Kumar, Deepak; Sreenadh, Konijeti Regularity and multiplicity results for fractional (p,q)-Laplacian equation, Commun. Contemp. Math., Volume 22 (2020) no. 8, 1950065, p. 37 | MR | Zbl

[9] Iannizzotto, Antonio; Mosconi, Sunra; Squassina, Marco Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam., Volume 32 (2016) no. 4, pp. 1353-1392 | DOI | Zbl

[10] Iannizzotto, Antonio; Mosconi, Sunra; Squassina, Marco Fine boundary regularity for the fractional p-Laplacian, J. Funct. Anal., Volume 279 (2020) no. 8, 108659, 53 pages | MR | Zbl

[11] Iannizzotto, Antonio; Mosconi, Sunra; Squassina, Marco Sobolev versus Hölder minimizers for the degenerate fractional p-Laplacian, Nonlinear Anal., Theory Methods Appl., Volume 191 (2020), 111635, 14 pages | Zbl

[12] Ros-Oton, Xavier; Serra, Joaquim The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., Volume 101 (2014) no. 3, pp. 275-302 | DOI | MR | Zbl

Cité par Sources :