Let be a nilpotent Lie group and let be a coherent state representation of . The interplay between the cyclicity of the restriction to a lattice and the completeness of subsystems of coherent states based on a homogeneous -space is considered. In particular, it is shown that necessary density conditions for Perelomov’s completeness problem can be obtained via density conditions for the cyclicity of .
Accepté le :
Publié le :
@article{CRMATH_2022__360_G7_799_0, author = {van Velthoven, Jordy Timo}, title = {Completeness of coherent state subsystems for nilpotent {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {799--808}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G7}, year = {2022}, doi = {10.5802/crmath.342}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.342/} }
TY - JOUR AU - van Velthoven, Jordy Timo TI - Completeness of coherent state subsystems for nilpotent Lie groups JO - Comptes Rendus. Mathématique PY - 2022 SP - 799 EP - 808 VL - 360 IS - G7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.342/ DO - 10.5802/crmath.342 LA - en ID - CRMATH_2022__360_G7_799_0 ER -
%0 Journal Article %A van Velthoven, Jordy Timo %T Completeness of coherent state subsystems for nilpotent Lie groups %J Comptes Rendus. Mathématique %D 2022 %P 799-808 %V 360 %N G7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.342/ %R 10.5802/crmath.342 %G en %F CRMATH_2022__360_G7_799_0
van Velthoven, Jordy Timo. Completeness of coherent state subsystems for nilpotent Lie groups. Comptes Rendus. Mathématique, Tome 360 (2022) no. G7, pp. 799-808. doi : 10.5802/crmath.342. http://www.numdam.org/articles/10.5802/crmath.342/
[1] Coherent states, wavelets, and their generalizations, Theoretical and Mathematical Physics (Cham), Springer, 2014, xviii+577 pages | Zbl
[2] On the completeness of the coherent states, Rep. Math. Phys., Volume 2 (1971) no. 4, pp. 221-228 | DOI | MR
[3] Square integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl., Volume 10 (2004) no. 4, pp. 325-349 | DOI | MR | Zbl
[4] Complemented *-primitive ideals in -algebras of exponential Lie groups and of motion groups, Math. Z., Volume 204 (1990) no. 4, pp. 515-526 | DOI | MR | Zbl
[5] On the moment map on symplectic manifolds, Bull. Belg. Math. Soc. Simon Stevin, Volume 16 (2009) no. 1, pp. 107-116 | MR | Zbl
[6] Representations of nilpotent Lie groups and their applications. Part 1: Basic theory and examples, Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press, 1990, viii+269 pages | Zbl
[7] Multivariate Gabor frames and sampling of entire functions of several variables, Appl. Comput. Harmon. Anal., Volume 31 (2011) no. 2, pp. 218-227 | DOI | MR | Zbl
[8] Symplectic techniques in physics, Cambridge University Press, 1984, xi+468 pages | Zbl
[9] Bergman space zero sets, modular forms, von Neumann algebras and ordered groups (2020) (https://arxiv.org/abs/2006.16419)
[10] Uniform lattice point estimates for co-finite Fuchsian groups, Proc. Lond. Math. Soc., Volume 78 (1999) no. 1, pp. 29-51 | DOI | MR | Zbl
[11] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 2002, xviii+812 pages | MR | Zbl
[12] Symplectic projective orbits, New directions in applied mathematics (Papers presented April 25/26, 1980, on the occasion of the case centennial celebration), Springer, 1982, pp. 81-84 | Zbl
[13] Kaehler coherent state orbits for representations of semisimple Lie groups, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 53 (1990) no. 2, pp. 245-258 | Numdam | MR | Zbl
[14] A classification of coherent state representations of unimodular Lie groups, Bull. Am. Math. Soc., Volume 25 (1991) no. 1, pp. 37-43 | DOI | MR | Zbl
[15] Coherent state representations. A survey, Rep. Math. Phys., Volume 35 (1995) no. 2-3, pp. 327-358 | DOI | MR | Zbl
[16] Coherent state representations of nilpotent Lie groups, Commun. Math. Phys., Volume 54 (1977), pp. 63-68 | DOI | MR | Zbl
[17] Coherent states and square integrable representations, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A, Volume 29 (1978), pp. 139-156 | Numdam | MR | Zbl
[18] Coherent states, holomorphic extensions, and highest weight representations, Pac. J. Math., Volume 174 (1996) no. 2, pp. 497-542 | DOI | MR | Zbl
[19] Square integrable highest weight representations, Glasg. Math. J., Volume 39 (1997) no. 3, pp. 295-321 | DOI | MR | Zbl
[20] Holomorphy and convexity in Lie theory, de Gruyter Expositions in Mathematics, 28, Walter de Gruyter, 1999, xxi+778 pages | Zbl
[21] Perelomov problem and inversion of the Segal-Bargmann transform, Funct. Anal. Appl., Volume 40 (2006) no. 4, pp. 330-333 | DOI | Zbl
[22] Coherent states and geometric quantization, Commun. Math. Phys., Volume 150 (1992) no. 2, pp. 385-413 | DOI | MR | Zbl
[23] Remark on the completeness of the coherent state system, Teor. Mat. Fiz., Volume 6 (1971) no. 2, pp. 213-224 | MR
[24] Coherent states for arbitrary Lie group, Commun. Math. Phys., Volume 26 (1972), pp. 222-236 | DOI | MR | Zbl
[25] Coherent states for the Lobačevskiĭ plane, Funkts. Anal. Prilozh., Volume 7 (1973) no. 3, pp. 57-66 | MR
[26] Generalized coherent states and their applications, Texts and Monographs in Physics, Springer, 1986 | DOI | Zbl
[27] Remarks on multivariate Gaussian Gabor frames, Monatsh. Math., Volume 172 (2013) no. 2, pp. 179-187 | DOI | MR | Zbl
[28] Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., Volume 2 (1995) no. 2, pp. 148-153 | DOI | MR | Zbl
[29] Coherent states and Kähler manifolds, Q. J. Math., Oxf. II. Ser., Volume 28 (1977), pp. 403-415 | DOI | Zbl
[30] von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann., Volume 257 (1981) no. 4, pp. 403-418 | DOI | MR | Zbl
[31] The density theorem for discrete series representations restricted to lattices, Expo. Math., Volume 40 (2022) no. 2, pp. 265-301 | DOI | MR | Zbl
[32] Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Funct. Anal., Volume 13 (1973), pp. 324-389 | DOI | MR | Zbl
[33] Convexity and unitary representations of nilpotent Lie groups, Invent. Math., Volume 98 (1989) no. 2, pp. 281-292 | DOI | MR | Zbl
[34] Geometric quantization, Oxford Math. Monogr., Clarendon Press, 1992, xi+307 pages | Zbl
Cité par Sources :