We say that a group is anti-solvable if all of its composition factors are non-abelian. We consider a particular family of anti-solvable finite groups containing the simple alternating groups for and all 26 sporadic simple groups. We prove that, if is a perfect field and is a homogeneous space of a smooth algebraic -group with finite geometric stabilizers lying in this family, then is dominated by a -torsor. In particular, if , all such homogeneous spaces have rational points.
Révisé le :
Accepté le :
Publié le :
Mots clés : homogeneous spaces, rational points, non-abelian cohomology, finite simple groups
@article{CRMATH_2022__360_G7_777_0, author = {Lucchini Arteche, Giancarlo}, title = {On homogeneous spaces with finite anti-solvable stabilizers}, journal = {Comptes Rendus. Math\'ematique}, pages = {777--780}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G7}, year = {2022}, doi = {10.5802/crmath.339}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.339/} }
TY - JOUR AU - Lucchini Arteche, Giancarlo TI - On homogeneous spaces with finite anti-solvable stabilizers JO - Comptes Rendus. Mathématique PY - 2022 SP - 777 EP - 780 VL - 360 IS - G7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.339/ DO - 10.5802/crmath.339 LA - en ID - CRMATH_2022__360_G7_777_0 ER -
%0 Journal Article %A Lucchini Arteche, Giancarlo %T On homogeneous spaces with finite anti-solvable stabilizers %J Comptes Rendus. Mathématique %D 2022 %P 777-780 %V 360 %N G7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.339/ %R 10.5802/crmath.339 %G en %F CRMATH_2022__360_G7_777_0
Lucchini Arteche, Giancarlo. On homogeneous spaces with finite anti-solvable stabilizers. Comptes Rendus. Mathématique, Tome 360 (2022) no. G7, pp. 777-780. doi : 10.5802/crmath.339. http://www.numdam.org/articles/10.5802/crmath.339/
[1] On groups without abelian composition factors, J. Algebra, Volume 5 (1967), pp. 106-109 | DOI | MR | Zbl
[2] Abelianization of the second nonabelian Galois cohomology, Duke Math. J., Volume 72 (1993) no. 1, pp. 217-239 | MR | Zbl
[3] Le principe de Hasse pour les espaces homogènes : réduction au cas des stabilisateurs finis, Compos. Math., Volume 155 (1900) no. 8, pp. 1568-1593 | DOI | Zbl
[4] Abstract Algebra, John Wiley & Sons, 2004
[5] Grothendieck’s theorem on non-abelian and local-global principles, J. Am. Math. Soc., Volume 11 (1998) no. 3, pp. 731-750 | DOI | MR | Zbl
[6] Finite Groups, Chelsea Publishing, 1980
[7] On the existence of a complement for a finite simple group in its automorphism group, Ill. J. Math., Volume 47 (2003) no. 1-2, pp. 395-418 | DOI | MR
[8] Homology, Classics in Mathematics, Springer, 1995 (Reprint of the 1975 edition)
[9] Nonabelian in Galois cohomology, Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics), Volume 9, American Mathematical Society, 1966, pp. 164-182 | DOI | Zbl
[10] On nonabelian for profinite groups, Can. J. Math., Volume 43 (1991) no. 1, pp. 213-224 | DOI | MR | Zbl
Cité par Sources :