Un groupe fini dont toutes les valeurs de caractères complexes sont rationnelles est appelé un groupe rationnel. Dans cet article, nous classifions tous les groupes rationnels dont les graphes de degrés de caractère sont déconnectés.
A finite group all of whose complex character values are rational is called a rational group. In this paper, we classify all rational groups whose character degree graphs are disconnected.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.337
@article{CRMATH_2022__360_G6_711_0, author = {Erko\c{c}, Temha and Akar, Gamze}, title = {Rational {Groups} whose character degree graphs are disconnected}, journal = {Comptes Rendus. Math\'ematique}, pages = {711--715}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.337}, zbl = {07547269}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.337/} }
TY - JOUR AU - Erkoç, Temha AU - Akar, Gamze TI - Rational Groups whose character degree graphs are disconnected JO - Comptes Rendus. Mathématique PY - 2022 SP - 711 EP - 715 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.337/ DO - 10.5802/crmath.337 LA - en ID - CRMATH_2022__360_G6_711_0 ER -
%0 Journal Article %A Erkoç, Temha %A Akar, Gamze %T Rational Groups whose character degree graphs are disconnected %J Comptes Rendus. Mathématique %D 2022 %P 711-715 %V 360 %N G6 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.337/ %R 10.5802/crmath.337 %G en %F CRMATH_2022__360_G6_711_0
Erkoç, Temha; Akar, Gamze. Rational Groups whose character degree graphs are disconnected. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 711-715. doi : 10.5802/crmath.337. http://www.numdam.org/articles/10.5802/crmath.337/
[1] On a conjecture of Alvis, J. Algebra, Volume 294 (2005) no. 1, pp. 136-155 | DOI | MR | Zbl
[2] Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, with Computational Assistance from J.G. Thackray, Clarendon Press, 1985
[3] On finite rational groups and related topics, Ill. J. Math., Volume 33 (1989) no. 1, pp. 103-131 | MR | Zbl
[4] Groups whose characters are rational-valued, J. Algebra, Volume 40 (1976) no. 1, pp. 280-299 | MR | Zbl
[5] Structure of solvable rational groups, Proc. Lond. Math. Soc., Volume 90 (2005) no. 2, pp. 439-471 | MR | Zbl
[6] Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer, 1967 | DOI
[7] Character Theory of Finite Groups, Pure and Applied Mathematics, 69, Academic Press Inc., 1976 | MR
[8] Structure and Representations of Q-Groups, Lecture Notes in Mathematics, 1084, Springer, 1984 | DOI | MR
[9] Solvable groups whose degree graphs have two connected components, J. Group Theory, Volume 4 (2001) no. 3, pp. 255-275 | MR | Zbl
[10] Connectedness of degree graphs of nonsolvable groups, J. Algebra, Volume 266 (2003) no. 1, pp. 51-76 | DOI | MR | Zbl
[11] The diameter of the character degree graph, J. Reine Angew. Math., Volume 402 (1989), pp. 181-198 | MR | Zbl
[12] On the character degree graph of solvable groups. I: Three primes, Period. Math. Hung., Volume 36 (1998) no. 1, pp. 61-65 | DOI | MR | Zbl
[13] Rational Nearly Simple Groups, Bull. Aust. Math. Soc., Volume 103 (2021) no. 3, pp. 475-485 | DOI | MR | Zbl
Cité par Sources :