Théorie des groupes
Rational Groups whose character degree graphs are disconnected
Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 711-715.

Un groupe fini dont toutes les valeurs de caractères complexes sont rationnelles est appelé un groupe rationnel. Dans cet article, nous classifions tous les groupes rationnels dont les graphes de degrés de caractère sont déconnectés.

A finite group all of whose complex character values are rational is called a rational group. In this paper, we classify all rational groups whose character degree graphs are disconnected.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.337
Classification : 20C15
Erkoç, Temha 1 ; Akar, Gamze 2

1 Istanbul University, Faculty of Science, Department of Mathematics, 34134 Istanbul,Turkey
2 Istinye University, Faculty of Engineering and Natural Sciences, Department of Mathematics, 34396 Istanbul,Turkey
@article{CRMATH_2022__360_G6_711_0,
     author = {Erko\c{c}, Temha and Akar, Gamze},
     title = {Rational {Groups} whose character degree graphs are disconnected},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {711--715},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G6},
     year = {2022},
     doi = {10.5802/crmath.337},
     zbl = {07547269},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.337/}
}
TY  - JOUR
AU  - Erkoç, Temha
AU  - Akar, Gamze
TI  - Rational Groups whose character degree graphs are disconnected
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 711
EP  - 715
VL  - 360
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.337/
DO  - 10.5802/crmath.337
LA  - en
ID  - CRMATH_2022__360_G6_711_0
ER  - 
%0 Journal Article
%A Erkoç, Temha
%A Akar, Gamze
%T Rational Groups whose character degree graphs are disconnected
%J Comptes Rendus. Mathématique
%D 2022
%P 711-715
%V 360
%N G6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.337/
%R 10.5802/crmath.337
%G en
%F CRMATH_2022__360_G6_711_0
Erkoç, Temha; Akar, Gamze. Rational Groups whose character degree graphs are disconnected. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 711-715. doi : 10.5802/crmath.337. http://www.numdam.org/articles/10.5802/crmath.337/

[1] Barry, Michael J. J.; Ward, Michael B. On a conjecture of Alvis, J. Algebra, Volume 294 (2005) no. 1, pp. 136-155 | DOI | MR | Zbl

[2] Conway, John H.; Curtis, Robert T.; Norton, Simon P.; Parker, Richard A.; Wilson, Robert A. Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, with Computational Assistance from J.G. Thackray, Clarendon Press, 1985

[3] Feit, Walter; Seitz, Gary M. On finite rational groups and related topics, Ill. J. Math., Volume 33 (1989) no. 1, pp. 103-131 | MR | Zbl

[4] Gow, Roderick Groups whose characters are rational-valued, J. Algebra, Volume 40 (1976) no. 1, pp. 280-299 | MR | Zbl

[5] Hegedűs, Pál Structure of solvable rational groups, Proc. Lond. Math. Soc., Volume 90 (2005) no. 2, pp. 439-471 | MR | Zbl

[6] Huppert, Bertram Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer, 1967 | DOI

[7] Isaacs, I. Martin Character Theory of Finite Groups, Pure and Applied Mathematics, 69, Academic Press Inc., 1976 | MR

[8] Kletzing, Dennis Structure and Representations of Q-Groups, Lecture Notes in Mathematics, 1084, Springer, 1984 | DOI | MR

[9] Lewis, Mark L. Solvable groups whose degree graphs have two connected components, J. Group Theory, Volume 4 (2001) no. 3, pp. 255-275 | MR | Zbl

[10] Lewis, Mark L.; White, Donald L. Connectedness of degree graphs of nonsolvable groups, J. Algebra, Volume 266 (2003) no. 1, pp. 51-76 | DOI | MR | Zbl

[11] Manz, Olaf; Willems, Wolfgang; Wolf, Thomas R. The diameter of the character degree graph, J. Reine Angew. Math., Volume 402 (1989), pp. 181-198 | MR | Zbl

[12] Pálfy, Péter Pál On the character degree graph of solvable groups. I: Three primes, Period. Math. Hung., Volume 36 (1998) no. 1, pp. 61-65 | DOI | MR | Zbl

[13] Shafiei, Farideh; Darafsheh, Mohammad Reza; Shirjian, Farrokh Rational Nearly Simple Groups, Bull. Aust. Math. Soc., Volume 103 (2021) no. 3, pp. 475-485 | DOI | MR | Zbl

Cité par Sources :