Invariants for Riemann surfaces covered by the disc and for hyperbolic manifolds in general involving minimizing the measure of the image over the homotopy and homology classes of closed curves and maps of the -sphere into the manifold are investigated. The invariants are monotonic under holomorphic mappings and strictly monotonic under certain circumstances. Applications to holomorphic maps of annular regions in and tubular neighborhoods of compact totally real submanifolds in general in , , are given. The contractibility of a hyperbolic domain with contracting holomorphic mapping is explained.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G8_829_0, author = {Greene, Robert E. and Kim, Kang-Tae and Shcherbina, Nikolay V.}, title = {Topological invariants and {Holomorphic} {Mappings}}, journal = {Comptes Rendus. Math\'ematique}, pages = {829--844}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G8}, year = {2022}, doi = {10.5802/crmath.336}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.336/} }
TY - JOUR AU - Greene, Robert E. AU - Kim, Kang-Tae AU - Shcherbina, Nikolay V. TI - Topological invariants and Holomorphic Mappings JO - Comptes Rendus. Mathématique PY - 2022 SP - 829 EP - 844 VL - 360 IS - G8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.336/ DO - 10.5802/crmath.336 LA - en ID - CRMATH_2022__360_G8_829_0 ER -
%0 Journal Article %A Greene, Robert E. %A Kim, Kang-Tae %A Shcherbina, Nikolay V. %T Topological invariants and Holomorphic Mappings %J Comptes Rendus. Mathématique %D 2022 %P 829-844 %V 360 %N G8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.336/ %R 10.5802/crmath.336 %G en %F CRMATH_2022__360_G8_829_0
Greene, Robert E.; Kim, Kang-Tae; Shcherbina, Nikolay V. Topological invariants and Holomorphic Mappings. Comptes Rendus. Mathématique, Tome 360 (2022) no. G8, pp. 829-844. doi : 10.5802/crmath.336. http://www.numdam.org/articles/10.5802/crmath.336/
[1] Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, McGraw-Hill, 1979 | Zbl
[2] The Kobayashi distance induces the standard topology, Proc. Am. Math. Soc., Volume 35 (1972), pp. 439-441
[3] A fixed point theorem for holomorphic mappings, Global Analysis (Proceedings of Symposia in Pure Mathematics), Volume 16, American Mathematical Society, 1968, pp. 61-65
[4] Introduction to topology, Dover Publications, 1999, xiv+234 pages
[5] Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, 26, American Mathematical Society, 1969, vi+676 pages
[6] Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in with smooth boundary, Trans. Am. Math. Soc., Volume 207 (1975), pp. 219-240
[7] The geometry of complex domains, Progress in Mathematics, 291, Birkhäuser, 2011, xiv+303 pages
[8] Function theory of one complex variable, Graduate Studies in Mathematics, 40, American Mathematical Society, 2006, xix+504 pages
[9] approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 1, pp. 47-84
[10] Zur Theorie der Verschiebung bei schlichter konformer Abbildung, Comment. Math. Helv., Volume 8 (1935) no. 1, pp. 382-390
[11] Algebraic topology, Cambridge University Press, 2002, xii+544 pages
[12] Several complex variables. Local theory, Tata Institute of Fundamental Research Studies in Mathematics, 1, Oxford University Press, 1963
[13] Schwarz’s lemma from a differential geometric viewpoint, IISc Lecture Notes Series, 2, World Scientific, 2011, xvi+82 pages
[14] Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, 2, Marcel Dekker, 1970, ix+148 pages
[15] Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, 318, Springer, 1998
[16] Quelques consequences de l’hypothese que la fonction de Riemann n’a pas de zeros dans le demi-plan , C. R. Acad. Sci. Paris, Volume 154 (1912), pp. 263-266
[17] Morse theory. Based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies, 51, Princeton University Press, 1963, vi+153 pages
[18] The critical points of a function of variables, Trans. Am. Math. Soc., Volume 33 (1931), pp. 72-91
[19] Extremal length in higher dimensions and complex systolic inequalities, J. Geom. Anal., Volume 31 (2021) no. 5, pp. 5073-5093
[20] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages
[21] Sur quelques propriétés de la représentation conforme des domaines multiplement connexes, en relation avec le théorème des fentes parallèles, Math. Ann., Volume 107 (1933) no. 1, pp. 496-504
[22] Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann., Volume 161 (1965), pp. 315-324
[23] Remarks on the Kobayashi metric, Lecture Notes in Mathematics, 185, Springer, 1970, pp. 125-137
[24] Report on the Teichmüller metric, Proc. Natl. Acad. Sci. USA, Volume 65 (1970), pp. 497-499
[25] Real and complex analysis, McGraw-Hill, 1987
[26] Combinatorial homotopy II, Bull. Am. Math. Soc., Volume 55 (1949), pp. 453-496
Cité par Sources :