Analyse et géométrie complexes
Topological invariants and Holomorphic Mappings
Comptes Rendus. Mathématique, Tome 360 (2022) no. G8, pp. 829-844.

Invariants for Riemann surfaces covered by the disc and for hyperbolic manifolds in general involving minimizing the measure of the image over the homotopy and homology classes of closed curves and maps of the k-sphere into the manifold are investigated. The invariants are monotonic under holomorphic mappings and strictly monotonic under certain circumstances. Applications to holomorphic maps of annular regions in and tubular neighborhoods of compact totally real submanifolds in general in n , n2, are given. The contractibility of a hyperbolic domain with contracting holomorphic mapping is explained.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.336
Greene, Robert E. 1 ; Kim, Kang-Tae 2 ; Shcherbina, Nikolay V. 3

1 Department of Mathematics, University of California, Los Angeles, CA 90095 U.S.A.
2 Department of Mathematics, Pohang University of Science and Technology, Pohang City 37673 South Korea
3 Department of Mathematics, University of Wuppertal, 42119 Wuppertal, Germany
@article{CRMATH_2022__360_G8_829_0,
     author = {Greene, Robert E. and Kim, Kang-Tae and Shcherbina, Nikolay V.},
     title = {Topological invariants and {Holomorphic} {Mappings}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {829--844},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G8},
     year = {2022},
     doi = {10.5802/crmath.336},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.336/}
}
TY  - JOUR
AU  - Greene, Robert E.
AU  - Kim, Kang-Tae
AU  - Shcherbina, Nikolay V.
TI  - Topological invariants and Holomorphic Mappings
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 829
EP  - 844
VL  - 360
IS  - G8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.336/
DO  - 10.5802/crmath.336
LA  - en
ID  - CRMATH_2022__360_G8_829_0
ER  - 
%0 Journal Article
%A Greene, Robert E.
%A Kim, Kang-Tae
%A Shcherbina, Nikolay V.
%T Topological invariants and Holomorphic Mappings
%J Comptes Rendus. Mathématique
%D 2022
%P 829-844
%V 360
%N G8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.336/
%R 10.5802/crmath.336
%G en
%F CRMATH_2022__360_G8_829_0
Greene, Robert E.; Kim, Kang-Tae; Shcherbina, Nikolay V. Topological invariants and Holomorphic Mappings. Comptes Rendus. Mathématique, Tome 360 (2022) no. G8, pp. 829-844. doi : 10.5802/crmath.336. http://www.numdam.org/articles/10.5802/crmath.336/

[1] Ahlfors, Lars V. Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, McGraw-Hill, 1979 | Zbl

[2] Barth, Theodore J. The Kobayashi distance induces the standard topology, Proc. Am. Math. Soc., Volume 35 (1972), pp. 439-441

[3] Earle, Clifford J.; Hamilton, Richard S. A fixed point theorem for holomorphic mappings, Global Analysis (Proceedings of Symposia in Pure Mathematics), Volume 16, American Mathematical Society, 1968, pp. 61-65

[4] Gamelin, Theodore W.; Greene, Robert E. Introduction to topology, Dover Publications, 1999, xiv+234 pages

[5] Goluzin, Gennadiĭ M. Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, 26, American Mathematical Society, 1969, vi+676 pages

[6] Graham, Ian Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in C n with smooth boundary, Trans. Am. Math. Soc., Volume 207 (1975), pp. 219-240

[7] Greene, Robert E.; Kim, Kang-Tae; Krantz, Steven G. The geometry of complex domains, Progress in Mathematics, 291, Birkhäuser, 2011, xiv+303 pages

[8] Greene, Robert E.; Krantz, Steven G. Function theory of one complex variable, Graduate Studies in Mathematics, 40, American Mathematical Society, 2006, xix+504 pages

[9] Greene, Robert E.; Wu, Hung-Hsi 𝒞 approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 1, pp. 47-84

[10] Grötzsch, Herbert Zur Theorie der Verschiebung bei schlichter konformer Abbildung, Comment. Math. Helv., Volume 8 (1935) no. 1, pp. 382-390

[11] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002, xii+544 pages

[12] Hervé, Michel Several complex variables. Local theory, Tata Institute of Fundamental Research Studies in Mathematics, 1, Oxford University Press, 1963

[13] Kim, Kang-Tae; Lee, Hanjin Schwarz’s lemma from a differential geometric viewpoint, IISc Lecture Notes Series, 2, World Scientific, 2011, xvi+82 pages

[14] Kobayashi, Shoshichi Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, 2, Marcel Dekker, 1970, ix+148 pages

[15] Kobayashi, Shoshichi Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, 318, Springer, 1998

[16] Littlewood, John E. Quelques consequences de l’hypothese que la fonction ζ(s) de Riemann n’a pas de zeros dans le demi-plan (s)>1/2, C. R. Acad. Sci. Paris, Volume 154 (1912), pp. 263-266

[17] Milnor, John W. Morse theory. Based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies, 51, Princeton University Press, 1963, vi+153 pages

[18] Morse, Marston The critical points of a function of n variables, Trans. Am. Math. Soc., Volume 33 (1931), pp. 72-91

[19] Pacini, Tommaso Extremal length in higher dimensions and complex systolic inequalities, J. Geom. Anal., Volume 31 (2021) no. 5, pp. 5073-5093

[20] Petersen, Peter Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages

[21] de Possel, Rene Sur quelques propriétés de la représentation conforme des domaines multiplement connexes, en relation avec le théorème des fentes parallèles, Math. Ann., Volume 107 (1933) no. 1, pp. 496-504

[22] Reiffen, Hans-Jörg Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann., Volume 161 (1965), pp. 315-324

[23] Royden, H. L. Remarks on the Kobayashi metric, Lecture Notes in Mathematics, 185, Springer, 1970, pp. 125-137

[24] Royden, H. L. Report on the Teichmüller metric, Proc. Natl. Acad. Sci. USA, Volume 65 (1970), pp. 497-499

[25] Rudin, Walter Real and complex analysis, McGraw-Hill, 1987

[26] Whitehead, John H. C. Combinatorial homotopy II, Bull. Am. Math. Soc., Volume 55 (1949), pp. 453-496

Cité par Sources :