Algèbre, Analyse et géométrie complexes
Limit spectral distribution for non-degenerate hypersurface singularities
Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 699-710.

We establish Kyoji Saito’s continuous limit distribution for the spectrum of Newton non-degenerate hypersurface singularities. Investigating Saito’s notion of dominant value in the case of irreducible plane curve singularities, we find that the log canonical threshold is strictly bounded below by the doubled inverse of the Milnor number. We show that this bound is asymptotically sharp.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.335
Classification : 32S25, 32S35, 42A38
Almirón, Patricio 1 ; Schulze, Mathias 2

1 Instituto de Matemática Interdisciplinar (IMI), Departamento de Álgebra, Geometría y Topología Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040, Madrid, Spain
2 Department of Mathematics, TU Kaiserslautern, 67663 Kaiserslautern, Germany
@article{CRMATH_2022__360_G6_699_0,
     author = {Almir\'on, Patricio and Schulze, Mathias},
     title = {Limit spectral distribution for non-degenerate hypersurface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {699--710},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G6},
     year = {2022},
     doi = {10.5802/crmath.335},
     zbl = {07547268},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.335/}
}
TY  - JOUR
AU  - Almirón, Patricio
AU  - Schulze, Mathias
TI  - Limit spectral distribution for non-degenerate hypersurface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 699
EP  - 710
VL  - 360
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.335/
DO  - 10.5802/crmath.335
LA  - en
ID  - CRMATH_2022__360_G6_699_0
ER  - 
%0 Journal Article
%A Almirón, Patricio
%A Schulze, Mathias
%T Limit spectral distribution for non-degenerate hypersurface singularities
%J Comptes Rendus. Mathématique
%D 2022
%P 699-710
%V 360
%N G6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.335/
%R 10.5802/crmath.335
%G en
%F CRMATH_2022__360_G6_699_0
Almirón, Patricio; Schulze, Mathias. Limit spectral distribution for non-degenerate hypersurface singularities. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 699-710. doi : 10.5802/crmath.335. http://www.numdam.org/articles/10.5802/crmath.335/

[1] A’Campo, Norbert Sur la monodromie des singularités isolées d’hypersurfaces complexes, Invent. Math., Volume 20 (1973), pp. 147-169 | DOI | MR

[2] Brélivet, Thomas Variance of the spectral numbers and Newton polygons, Bull. Sci. Math., Volume 126 (2002) no. 4, pp. 332-342 | MR | Zbl

[3] Brélivet, Thomas The Hertling conjecture in dimension 2 (2004) | arXiv

[4] Brélivet, Thomas; Hertling, Claus Bernoulli moments of spectral numbers and Hodge numbers, J. Singul., Volume 20 (2020), pp. 205-231 | DOI | MR | Zbl

[5] Buchweitz, Ragnar-Olaf; Greuel, Gert-Martin The Milnor number and deformations of complex curve singularities, Invent. Math., Volume 58 (1980) no. 3, pp. 241-281 | DOI | MR | Zbl

[6] Hertling, Claus Frobenius manifolds and variance of the spectral numbers, New developments in singularity theory (Cambridge, 2000) (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 21, Kluwer Academic Publishers, 2001, pp. 235-255 | DOI | MR | Zbl

[7] Hochster, Melvin Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes, Ann. Math., Volume 96 (1972), pp. 318-337 | DOI | MR | Zbl

[8] Igusa, Junichi On the first terms of certain asymptotic expansions, Complex analysis and algebraic geometry, Cambridge University Press, 1977, pp. 357-368 | DOI | MR | Zbl

[9] Kerner, Dmitry; Némethi, András Durfee-type bound for some non-degenerate complete intersection singularities, Math. Z., Volume 285 (2017) no. 1-2, pp. 159-175 | DOI | MR | Zbl

[10] Khovanskiĭ, Askold G. Newton polyhedra (resolution of singularities), Current problems in mathematics, Vol. 22 (Itogi Nauki i Tekhniki), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1983, pp. 207-239 | MR

[11] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976) no. 1, pp. 1-31 | DOI | MR | Zbl

[12] Kulikov, Valentine S. Mixed Hodge structures and singularities, Cambridge Tracts in Mathematics, 132, Cambridge University Press, 1998, xxii+186 pages | DOI | MR

[13] Kunz, Ernst The value-semigroup of a one-dimensional Gorenstein ring, Proc. Am. Math. Soc., Volume 25 (1970), pp. 748-751 | DOI | MR | Zbl

[14] Kuwata, Takayasu On log canonical thresholds of reducible plane curves, Am. J. Math., Volume 121 (1999) no. 4, pp. 701-721 | DOI | MR | Zbl

[15] Martin, Bernd; Pfister, Gerhard Milnor number of complete intersections and Newton polygons, Math. Nachr., Volume 110 (1983), pp. 159-177 | DOI | MR | Zbl

[16] Saito, Kyoji The zeroes of characteristic function χ f for the exponents of a hypersurface isolated singular point, Algebraic varieties and analytic varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 195-217 | DOI | MR | Zbl

[17] Saito, Morihiko On the exponents and the geometric genus of an isolated hypersurface singularity, Singularities, Part 2 (Arcata, Calif., 1981) (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 465-472 | MR | Zbl

[18] Saito, Morihiko Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann., Volume 281 (1988) no. 3, pp. 411-417 | DOI | MR | Zbl

[19] Steenbrink, Joseph H. M. Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff International Publishers (1977), pp. 525-563 | MR | Zbl

[20] Varchenko, Alexander N.; Khovanskiĭ, Askold G. Asymptotic behavior of integrals over vanishing cycles and the Newton polyhedron, Dokl. Akad. Nauk SSSR, Volume 283 (1985) no. 3, pp. 521-525 | MR

[21] Zariski, Oscar The moduli problem for plane branches, University Lecture Series, 39, American Mathematical Society, 2006, viii+151 pages (with an appendix by Bernard Teissier, translated from the 1973 French original by Ben Lichtin) | DOI | MR

Cité par Sources :