Dans cette note, nous établissons la conjecture forte d’ouverture et la stabilité des faisceaux de sous-modules multiplicateurs associés aux métriques semi-positives de Nakano singulières sur les fibrés vectoriels holomorphes, ce qui généralise les mêmes propriétés pour les faisceaux d’idéaux multiplicateurs associés aux fibrés en droites pseudo-effectifs.
In this note, we establish the strong openness and stability property of multiplier submodule sheaves associated to singular Nakano semi-positive metrics on holomorphic vector bundles, which generalizes the same properties for multiplier ideal sheaves associated to pseudo-effective line bundles.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G11_1205_0, author = {Liu, Zhuo and Yang, Hui and Zhou, Xiangyu}, title = {New {Properties} of {Multiplier} {Submodule} {Sheaves}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1205--1212}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G11}, year = {2022}, doi = {10.5802/crmath.334}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.334/} }
TY - JOUR AU - Liu, Zhuo AU - Yang, Hui AU - Zhou, Xiangyu TI - New Properties of Multiplier Submodule Sheaves JO - Comptes Rendus. Mathématique PY - 2022 SP - 1205 EP - 1212 VL - 360 IS - G11 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.334/ DO - 10.5802/crmath.334 LA - en ID - CRMATH_2022__360_G11_1205_0 ER -
%0 Journal Article %A Liu, Zhuo %A Yang, Hui %A Zhou, Xiangyu %T New Properties of Multiplier Submodule Sheaves %J Comptes Rendus. Mathématique %D 2022 %P 1205-1212 %V 360 %N G11 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.334/ %R 10.5802/crmath.334 %G en %F CRMATH_2022__360_G11_1205_0
Liu, Zhuo; Yang, Hui; Zhou, Xiangyu. New Properties of Multiplier Submodule Sheaves. Comptes Rendus. Mathématique, Tome 360 (2022) no. G11, pp. 1205-1212. doi : 10.5802/crmath.334. http://www.numdam.org/articles/10.5802/crmath.334/
[1] The openness conjecture and complex Brunn-Minkowski inequalities, Complex geometry and dynamics. The Abel symposium 2013, (Fornæss, John Erik et al., eds.) (Abel Symposia), Volume 10, Springer, 2015, pp. 29-44 | DOI | MR | Zbl
[2] Singular hermitian metrics on vector bundles, J. Reine Angew. Math., Volume 502 (1998), pp. 93-122 | MR | Zbl
[3] Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (ICTP Lecture Notes), Volume 6, The Abdus Salam International Centre for Theoretical Physics, 2001, pp. 1-148 | MR | Zbl
[4] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 4, pp. 525-556 | DOI | Numdam | Zbl
[5] Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | Zbl
[6] Positivity of holomorphic vector bundles in terms of -conditions of (2020) online published in Math. Ann. (2022), p. 1-33, https://arxiv.org/abs/2001.01762v1
[7] Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | DOI | MR | Zbl
[8] A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | MR | Zbl
[9] Estimation of weighted norm related to Demailly’s strong openness conjecture (2016) (to appear in Chinese Annals of Math., Series B, https://arxiv.org/abs/1603.05733v1)
[10] Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math., Volume 202 (2015) no. 2, pp. 635-676 | DOI | MR | Zbl
[11] A proof of Demailly’s strong openness conjecture, Ann. Math., Volume 182 (2015) no. 2, pp. 605-616 | DOI | MR | Zbl
[12] The weighted log canonical threshold, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 4, pp. 283-288 | DOI | MR | Zbl
[13] Nakano positivity of singular hermitian metrics and vanishing theorems of Demailly–Nadel–Nakano type, Algebr. Geom., Volume 9 (2022) no. 1, pp. 69-92 | DOI | MR | Zbl
[14] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012) no. 6, pp. 2145-2209 | DOI | Numdam | MR | Zbl
[15] Modules of square integrable holomorphic germs, Analysis meets geometry. The Mikael Passare memorial volume (Trends in Mathematics), Springer, 2017, pp. 311-333 | DOI | Zbl
[16] On the Multiplier Submodule Sheaves Associated to Singular Nakano Semi-positive Metrics (2021) (https://arxiv.org/abs/2111.13452)
[17] Singular hermitian metrics on holomorphic vector bundles, Ark. Mat., Volume 53 (2015) no. 2, pp. 359-382 | DOI | MR | Zbl
[18] The bounded convergence theorem, Am. Math. Mon., Volume 81 (1974) no. 4, pp. 387-389 | DOI | MR | Zbl
[19] On the pseudonorm project of birational classification of algebraic varieties, Geometry and analysis on manifolds (Progress in Mathematics), Volume 608, Springer, 2015, pp. 327-339 | Zbl
Cité par Sources :