In this paper, we prove a new point-sphere incidence bound in vector spaces over finite fields. More precisely, let be a set of points and be a set of spheres in . Suppose that , we prove that the number of incidences between and satisfies
under some conditions on , and radii. This improves the known upper bound in the literature. As an application, we show that for with , one has
This improves earlier results on this sum-product type problem over arbitrary finite fields.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.333
@article{CRMATH_2022__360_G6_687_0, author = {Koh, Doowon and Pham, Thang}, title = {A point-sphere incidence bound in odd dimensions and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {687--698}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.333}, zbl = {07547267}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.333/} }
TY - JOUR AU - Koh, Doowon AU - Pham, Thang TI - A point-sphere incidence bound in odd dimensions and applications JO - Comptes Rendus. Mathématique PY - 2022 SP - 687 EP - 698 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.333/ DO - 10.5802/crmath.333 LA - en ID - CRMATH_2022__360_G6_687_0 ER -
%0 Journal Article %A Koh, Doowon %A Pham, Thang %T A point-sphere incidence bound in odd dimensions and applications %J Comptes Rendus. Mathématique %D 2022 %P 687-698 %V 360 %N G6 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.333/ %R 10.5802/crmath.333 %G en %F CRMATH_2022__360_G6_687_0
Koh, Doowon; Pham, Thang. A point-sphere incidence bound in odd dimensions and applications. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 687-698. doi : 10.5802/crmath.333. http://www.numdam.org/articles/10.5802/crmath.333/
[1] On a theorem of Hegyvári and Hennecart, Pac. J. Math., Volume 305 (2020) no. 2, pp. 407-421 | Zbl
[2] Elementary methods for incidence problems in finite fields, Acta Arith., Volume 177 (2017) no. 2, pp. 133-142 | DOI | MR | Zbl
[3] Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Am. Math. Soc., Volume 363 (2011) no. 6, pp. 3255-3275 | DOI | Zbl
[4] Extension theorems for spheres in the finite field setting, Forum Math., Volume 22 (2010) no. 2, pp. 457-483 | MR | Zbl
[5] On restriction estimates for the zero radius sphere over finite fields, Can. J. Math., Volume 73 (2021) no. 3, pp. 769-786 | DOI | MR | Zbl
[6] Erdős distance problem in vector spaces over finite fields, Trans. Am. Math. Soc., Volume 359 (2007) no. 12, pp. 6127-6142 | DOI | Zbl
[7] On the finite field cone restriction conjecture in four dimensions and applications in incidence geometry (2021) (accepted in Int. Math. Res. Not.)
[8] Extension theorems and a connection to the Erdős-Falconer distance problem over finite fields, J. Funct. Anal., Volume 281 (2021) no. 8, 109137, 54 pages | Zbl
[9] Pseudo-random graphs, More sets, graphs and numbers (Bolyai Society Mathematical Studies), Volume 15, Springer, 2006, pp. 199-262 | DOI | MR
[10] Finite fields, Encyclopedia of Mathematics and Its Applications, 20, Cambridge University Press, 1996 | DOI
[11] Attaining the exponent for the sum-product problem in finite fields (2021) (https://arxiv.org/abs/2103.08252)
[12] A note on sum-product estimates over finite valuation rings, Acta Arith., Volume 198 (2021) no. 2, pp. 187-194 | DOI | MR | Zbl
[13] Incidences between points and generalized spheres over finite fields and related problems, Forum Math., Volume 29 (2017) no. 2, pp. 449-456 | DOI | MR | Zbl
[14] On the energy variant of the sum-product conjecture, Rev. Mat. Iberoam., Volume 36 (2019) no. 1, pp. 207-232 | DOI | MR | Zbl
Cité par Sources :