Combinatoire
A point-sphere incidence bound in odd dimensions and applications
Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 687-698.

In this paper, we prove a new point-sphere incidence bound in vector spaces over finite fields. More precisely, let P be a set of points and S be a set of spheres in 𝔽 q d . Suppose that |P|,|S|N, we prove that the number of incidences between P and S satisfies

I(P,S)N 2 q -1 +q d-1 2 N,

under some conditions on d,q, and radii. This improves the known upper bound N 2 q -1 +q d 2 N in the literature. As an application, we show that for A𝔽 q with q 1/2 |A|q d 2 +1 2d 2 , one has

max|A+A|,|dA 2 ||A| d q d-1 2 .

This improves earlier results on this sum-product type problem over arbitrary finite fields.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.333
Koh, Doowon 1 ; Pham, Thang 2

1 Department of Mathematics, Chungbuk National University, Korea
2 University of Science, Vietnam National University, Hanoi, Vietnam
@article{CRMATH_2022__360_G6_687_0,
     author = {Koh, Doowon and Pham, Thang},
     title = {A point-sphere incidence bound in odd dimensions and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {687--698},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G6},
     year = {2022},
     doi = {10.5802/crmath.333},
     zbl = {07547267},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.333/}
}
TY  - JOUR
AU  - Koh, Doowon
AU  - Pham, Thang
TI  - A point-sphere incidence bound in odd dimensions and applications
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 687
EP  - 698
VL  - 360
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.333/
DO  - 10.5802/crmath.333
LA  - en
ID  - CRMATH_2022__360_G6_687_0
ER  - 
%0 Journal Article
%A Koh, Doowon
%A Pham, Thang
%T A point-sphere incidence bound in odd dimensions and applications
%J Comptes Rendus. Mathématique
%D 2022
%P 687-698
%V 360
%N G6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.333/
%R 10.5802/crmath.333
%G en
%F CRMATH_2022__360_G6_687_0
Koh, Doowon; Pham, Thang. A point-sphere incidence bound in odd dimensions and applications. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 687-698. doi : 10.5802/crmath.333. http://www.numdam.org/articles/10.5802/crmath.333/

[1] Anh, Dao Nguyen Van; Ham, Le Quang; Koh, Doowon; Pham, Thang; Vinh, Le Anh On a theorem of Hegyvári and Hennecart, Pac. J. Math., Volume 305 (2020) no. 2, pp. 407-421 | Zbl

[2] Cilleruelo, Javier; Iosevich, Alex; Lund, Ben; Roche-Newton, Oliver; Rudnev, Misha Elementary methods for incidence problems in finite fields, Acta Arith., Volume 177 (2017) no. 2, pp. 133-142 | DOI | MR | Zbl

[3] Hart, Derrick; Iosevich, Alex; Koh, Doowon; Rudnev, Misha Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Am. Math. Soc., Volume 363 (2011) no. 6, pp. 3255-3275 | DOI | Zbl

[4] Iosevich, Alex; Koh, Doowon Extension theorems for spheres in the finite field setting, Forum Math., Volume 22 (2010) no. 2, pp. 457-483 | MR | Zbl

[5] Iosevich, Alex; Koh, Doowon; Lee, Sujin; Pham, Thang; Shen, Chun-Yen On restriction estimates for the zero radius sphere over finite fields, Can. J. Math., Volume 73 (2021) no. 3, pp. 769-786 | DOI | MR | Zbl

[6] Iosevich, Alex; Rudnev, Misha Erdős distance problem in vector spaces over finite fields, Trans. Am. Math. Soc., Volume 359 (2007) no. 12, pp. 6127-6142 | DOI | Zbl

[7] Koh, Doowon; Lee, Sujin; Pham, Thang On the finite field cone restriction conjecture in four dimensions and applications in incidence geometry (2021) (accepted in Int. Math. Res. Not.)

[8] Koh, Doowon; Pham, Thang; Vinh, Le Anh Extension theorems and a connection to the Erdős-Falconer distance problem over finite fields, J. Funct. Anal., Volume 281 (2021) no. 8, 109137, 54 pages | Zbl

[9] Krivelevich, Michael; Sudakov, Benny Pseudo-random graphs, More sets, graphs and numbers (Bolyai Society Mathematical Studies), Volume 15, Springer, 2006, pp. 199-262 | DOI | MR

[10] Lidl, Rudolf; Niederreiter, Harald Finite fields, Encyclopedia of Mathematics and Its Applications, 20, Cambridge University Press, 1996 | DOI

[11] Mohammadi, Ali; Stevens, Sophie Attaining the exponent 5/4 for the sum-product problem in finite fields (2021) (https://arxiv.org/abs/2103.08252)

[12] Pham, Duc Hiep A note on sum-product estimates over finite valuation rings, Acta Arith., Volume 198 (2021) no. 2, pp. 187-194 | DOI | MR | Zbl

[13] Phuong, Nguyen D.; Thang, Pham; Vinh, Le Anh Incidences between points and generalized spheres over finite fields and related problems, Forum Math., Volume 29 (2017) no. 2, pp. 449-456 | DOI | MR | Zbl

[14] Rudnev, Misha; Shkredov, Ilya D.; Stevens, Sophie On the energy variant of the sum-product conjecture, Rev. Mat. Iberoam., Volume 36 (2019) no. 1, pp. 207-232 | DOI | MR | Zbl

Cité par Sources :