Analyse complexe
Meromorphic solutions of a first order differential equations with delays
Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 665-678.

The main purpose of this paper is to study meromorphic solutions of the first order differential equations with delays

w(z+1)-w(z-1)+a(z)w (z) w(z) k =R(z,w(z))

and

w(z+1)+a(z)w (z) w(z) k =R(z,w(z)),

where k is a positive integer, a(z) is a rational function, R(z,w) is rational in w with rational coefficients. Some necessary conditions on the degree of R(z,w) are obtained for the equation to admit a transcendental meromorphic solution of minimal hypertype. These are extensions of some previous results due to Halburd, Korhonen, Liu and others. Some examples are given to support our conclusions.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.331
Classification : 34K40, 30D35, 34M55
Chen, Yu 1 ; Cao, Tingbin 1

1 Department of Mathematics, Nanchang University, Nanchang city, Jiangxi 330031, P. R. China
@article{CRMATH_2022__360_G6_665_0,
     author = {Chen, Yu and Cao, Tingbin},
     title = {Meromorphic solutions of a first order differential equations with delays},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {665--678},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G6},
     year = {2022},
     doi = {10.5802/crmath.331},
     zbl = {07547265},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.331/}
}
TY  - JOUR
AU  - Chen, Yu
AU  - Cao, Tingbin
TI  - Meromorphic solutions of a first order differential equations with delays
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 665
EP  - 678
VL  - 360
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.331/
DO  - 10.5802/crmath.331
LA  - en
ID  - CRMATH_2022__360_G6_665_0
ER  - 
%0 Journal Article
%A Chen, Yu
%A Cao, Tingbin
%T Meromorphic solutions of a first order differential equations with delays
%J Comptes Rendus. Mathématique
%D 2022
%P 665-678
%V 360
%N G6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.331/
%R 10.5802/crmath.331
%G en
%F CRMATH_2022__360_G6_665_0
Chen, Yu; Cao, Tingbin. Meromorphic solutions of a first order differential equations with delays. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 665-678. doi : 10.5802/crmath.331. http://www.numdam.org/articles/10.5802/crmath.331/

[1] Cherry, William; Ye, Zhuan Nevanlinna’s Theory of Value Distribution, Springer Monographs in Mathematics, Springer, 2001 | DOI

[2] Halburd, Rod; Korhonen, Risto Growth of meromorphic solutions of delay differential equations, Proc. Am. Math. Soc., Volume 145 (2017) no. 6, pp. 2513-2526 | DOI | MR | Zbl

[3] Hayman, Walter K. Meromorphic Functions, Oxford Mathematical Monographs, 78, Clarendon Press, 1964

[4] Hu, Pei-Chu; Liu, Man-Li A Malmquist Type Theorem for a Class of Delay Differential Equations, Bull. Malays. Math. Sci. Soc. (2021), pp. 1-15 | MR | Zbl

[5] Jianhua, Zheng; Korhonen, Risto Studies of Differences from the point of view of Nevanlinna Theory, Trans. Am. Math. Soc., Volume 373 (2020) no. 6, pp. 4285-4318 | DOI | MR | Zbl

[6] Laine, Ilpo Nevanlinna Theory and Complex Differential Equations, 15, Walter de Gruyter, 1993 | DOI

[7] Liu, Kai; Song, Chang Jiang Meromorphic solutions of complex differential-difference equations, Results Math., Volume 72 (2017) no. 4, pp. 1759-1771 | MR | Zbl

[8] Mokhon’ko, Anatolii Z On the Nevanlinna characteristic of some meromorphic functions, Funct. Anal. Appl., Volume 14 (1971), pp. 83-87

[9] Pastras, Georgios The Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics: A Primer for Advanced Undergraduates, SpringerBriefs in Physics, Springer, 2020 | DOI | MR

[10] Quispel, Gilles; Capel, Hans W.; Sahadevan, Ramajayam Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction, Phys. Lett., A, Volume 170 (1992) no. 5, pp. 379-383 | DOI

[11] Song, Chang Jiang; Liu, Kai; Ma, Lei Meromorphic solutions to non-linear differential-difference equations, Electron. J. Differ. Equ., Volume 2018 (2018), 93, 12 pages | MR | Zbl

[12] Valiron, Georges Sur la dérivée des fonctions algébroïdes, Bull. Soc. Math. Fr., Volume 59 (1931), pp. 17-39 | DOI | Numdam | Zbl

[13] Wang, Qiong; Han, Qi; Hu, Pei-Chu Quantitative properties of meromorphic solutions to some differential-difference equations, Bull. Aust. Math. Soc., Volume 99 (2019) no. 2, pp. 250-261 | DOI | MR | Zbl

[14] Xu, Ling; Cao, Ting Bin Meromorphic solutions of delay differential equations related to logistic type and generalizations, Bull. Sci. Math., Volume 172 (2021), 103040 | MR | Zbl

[15] Yang, Chung-Chun; Yi, Hong-Xun Uniqueness theory of meromorphic functions, Mathematics and its Applications (Dordrecht), 557, Springer, 2003 | DOI

[16] Zhang, Ran-Ran; Huang, Zhi-Bo Entire Solutions of Delay Differential Equations of Malmquist Type, J. Appl. Anal. Comput., Volume 10 (2020) no. 5, pp. 1720-1740 | MR | Zbl

Cité par Sources :