Divergence-free symmetric tensors seem ubiquitous in Mathematical Physics. We show that this structure occurs in models that are described by the so-called “second” variational principle, where the argument of the Lagrangian is a closed differential form. Divergence-free tensors are nothing but the second form of the Euler–Lagrange equations. The symmetry is associated with the invariance of the Lagrangian density upon the action of some orthogonal group.
Accepté le :
Publié le :
DOI : 10.5802/crmath.330
@article{CRMATH_2022__360_G6_653_0, author = {Serre, Denis}, title = {Symmetric {Divergence-free} tensors in the {Calculus} of {Variations}}, journal = {Comptes Rendus. Math\'ematique}, pages = {653--663}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.330}, zbl = {07547264}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.330/} }
TY - JOUR AU - Serre, Denis TI - Symmetric Divergence-free tensors in the Calculus of Variations JO - Comptes Rendus. Mathématique PY - 2022 SP - 653 EP - 663 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.330/ DO - 10.5802/crmath.330 LA - en ID - CRMATH_2022__360_G6_653_0 ER -
%0 Journal Article %A Serre, Denis %T Symmetric Divergence-free tensors in the Calculus of Variations %J Comptes Rendus. Mathématique %D 2022 %P 653-663 %V 360 %N G6 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.330/ %R 10.5802/crmath.330 %G en %F CRMATH_2022__360_G6_653_0
Serre, Denis. Symmetric Divergence-free tensors in the Calculus of Variations. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 653-663. doi : 10.5802/crmath.330. http://www.numdam.org/articles/10.5802/crmath.330/
[1] Relativistic fluids and magneto-fluids, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1989
[2] Calculus of variations with differential forms, J. Eur. Math. Soc., Volume 17 (2015) no. 4, pp. 1009-1039 | DOI | MR | Zbl
[3] Constant mean curvature surfaces, harmonic maps and integrable systems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2001 | DOI
[4] Gravitation, W. H. Freeman & Co, 1973
[5] Les ondes planes en électromagnétisme non linéaire, Physica D, Volume 31 (1988) no. 2, pp. 227-251 | DOI | Zbl
[6] Sur le principe variationnel des équations de la mécanique des fluides parfaits, M2AN, Math. Model. Numer. Anal., Volume 27 (1993), pp. 739-758 | DOI | Numdam | Zbl
[7] Non-linear electromagnetism and special relativity, Discrete Contin. Dyn. Syst., Volume 23 (2009), pp. 435-454 | DOI | MR | Zbl
Cité par Sources :