Let be a quasi-homogeneous isolated hypersurface singularity. In this paper we prove under certain weight conditions a relation between the property of being of Thom–Sebastiani type and the dimension of toral Lie subalgebras contained in the Yau algebra
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_539_0, author = {Epure, Raul}, title = {On the {Thom{\textendash}Sebastiani} {Property} of {Quasi-Homogeneous} {Isolated} {Hypersurface} {Singularities}}, journal = {Comptes Rendus. Math\'ematique}, pages = {539--547}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.324}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.324/} }
TY - JOUR AU - Epure, Raul TI - On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities JO - Comptes Rendus. Mathématique PY - 2022 SP - 539 EP - 547 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.324/ DO - 10.5802/crmath.324 LA - en ID - CRMATH_2022__360_G5_539_0 ER -
%0 Journal Article %A Epure, Raul %T On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities %J Comptes Rendus. Mathématique %D 2022 %P 539-547 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.324/ %R 10.5802/crmath.324 %G en %F CRMATH_2022__360_G5_539_0
Epure, Raul. On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 539-547. doi : 10.5802/crmath.324. http://www.numdam.org/articles/10.5802/crmath.324/
[1] Variation of complex structures and variation of Lie algebras II: new Lie algebras arising from singularities, J. Differ. Geom., Volume 115 (2020) no. 3, pp. 437-473 | DOI | MR | Zbl
[2] Singular 4-2-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2021
[3] Explicit and effective Mather–Yau correspondence in view of analytic gradings, doctoralthesis, Technische Universität Kaiserslautern (2020), II, 170, V pages http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-61500
[4] Hypersurface singularities with monomial Jacobian ideal, Bull. Lond. Math. Soc. (2022) (https://doi.org/10.1112/blms.12614) | DOI
[5] On the Lie algebra (X) of vector fields on a singularity, J. Math. Sci., Tokyo, Volume 1 (1994), pp. 239-250 | MR | Zbl
[6] Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer, 1975, xiv+247 pages | MR
[7] On the new -th Yau algebras of isolated hypersurface singularities, Math. Z., Volume 294 (2020), pp. 1-28 | DOI | MR | Zbl
[8] -th Yau number of isolated hypersurface singularities and An Inequality Conjecture, J. Aust. Math. Soc., Volume 110 (2021), 1650, 15 pages | DOI | MR
[9] On the Dimension of a New Class of Derivation Lie Algebras Associated to Singularities, Mathematics, Volume 9 (2021) no. 14 | DOI
[10] Local analytic geometry. Basic theory and applications, Advanced Lectures in Mathematics (ALM), Vieweg & Sohn, 2000, xii+382 pages | DOI | MR | Zbl
[11] Computational Commutative Algebra. II, Springer, 2005 | Zbl
[12] Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math., Volume 69 (1982) no. 2, pp. 243-251 | DOI | MR | Zbl
[13] Algorithms for Lie algebras of algebraic groups, Ph. D. Thesis, Technische Universiteit Eindhoven (2010)
[14] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Volume 14 (1971), pp. 123-142 | DOI | MR | Zbl
[15] Über Derivationen von lokalen analytischen Algebren, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press Inc., 1973, pp. 161-192 | MR | Zbl
[16] Micro-local characterization of quasi-homogeneous singularities, Am. J. Math., Volume 118 (1996) no. 2, pp. 389-399 | MR | Zbl
[17] A necessary and sufficient condition for a local commutative algebra to be a moduli algebra: weighted homogeneous case, Complex analytic singularities (Advanced Studies in Pure Mathematics), Volume 8, North-Holland, 1987, pp. 687-697 | DOI | MR | Zbl
[18] Derivations of the moduli algebras of weighted homogeneous hypersurface singularities, J. Algebra, Volume 457 (2016), pp. 18-25 | DOI | MR | Zbl
[19] Sharp upper estimate conjecture for the Yau number of a weighted homogeneous isolated hypersurface singularity, Pure Appl. Math. Q., Volume 12 (2016), pp. 165-181 | DOI | MR | Zbl
Cité par Sources :