In this paper, we study nonlinear Helmholtz equations with sign-changing diffusion coefficients on bounded domains. The existence of an orthonormal basis of eigenfunctions is established making use of weak -coercivity theory. All eigenvalues are proved to be bifurcation points and the bifurcating branches are investigated both theoretically and numerically. In a one-dimensional model example we obtain the existence of infinitely many bifurcating branches that are mutually disjoint, unbounded, and consist of solutions with a fixed nodal pattern.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_513_0, author = {Mandel, Rainer and Moitier, Zo{\"\i}s and Verf\"urth, Barbara}, title = {Nonlinear {Helmholtz} equations with sign-changing diffusion coefficient}, journal = {Comptes Rendus. Math\'ematique}, pages = {513--538}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.322}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.322/} }
TY - JOUR AU - Mandel, Rainer AU - Moitier, Zoïs AU - Verfürth, Barbara TI - Nonlinear Helmholtz equations with sign-changing diffusion coefficient JO - Comptes Rendus. Mathématique PY - 2022 SP - 513 EP - 538 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.322/ DO - 10.5802/crmath.322 LA - en ID - CRMATH_2022__360_G5_513_0 ER -
%0 Journal Article %A Mandel, Rainer %A Moitier, Zoïs %A Verfürth, Barbara %T Nonlinear Helmholtz equations with sign-changing diffusion coefficient %J Comptes Rendus. Mathématique %D 2022 %P 513-538 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.322/ %R 10.5802/crmath.322 %G en %F CRMATH_2022__360_G5_513_0
Mandel, Rainer; Moitier, Zoïs; Verfürth, Barbara. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 513-538. doi : 10.5802/crmath.322. http://www.numdam.org/articles/10.5802/crmath.322/
[1] Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced Mathematics, 104, Cambridge University Press, 2007, xii+316 pages | DOI | MR
[2] Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z., Volume 127 (1972), pp. 105-126 | DOI | Zbl
[3] On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients, J. Comput. Phys., Volume 322 (2016), pp. 224-247 | DOI | MR | Zbl
[4] Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numer. Math., Volume 138 (2018) no. 4, pp. 801-838 | DOI | MR | Zbl
[5] -coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 6, pp. 1363-1387 | DOI | Numdam | MR | Zbl
[6] Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1912-1919 | DOI | MR | Zbl
[7] Nonlinear optics, Elsevier; Academic Press Inc., 2008, xx+613 pages | MR
[8] Eigenvalue problems with sign-changing coefficients, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 6, pp. 671-675 | DOI | MR | Zbl
[9] T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., Volume 124 (2013) no. 1, pp. 1-29 | DOI | MR | Zbl
[10] pde2path 2.0: multi-parameter continuation and periodic domains, ENOC 2014 – Proceedings of 8th European Nonlinear Dynamics Conference (2014)
[11] Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019, xi+634 pages | DOI
[12] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | DOI | Zbl
[13] Positive solutions of semilinear elliptic problems, Differential equations (Sao Paulo, 1981) (Lecture Notes in Mathematics), Volume 957, Springer, 1982, pp. 34-87 | MR | Zbl
[14] Spectral flow and bifurcation of critical points of strongly-indefinite functionals. I. General theory, J. Funct. Anal., Volume 162 (1999) no. 1, pp. 52-95 | DOI | MR | Zbl
[15] Bifurcation theory, Applied Mathematical Sciences, 156, Springer, 2012, viii+398 pages (An introduction with applications to partial differential equations) | DOI
[16] The prehistory of the Hardy inequality, Am. Math. Mon., Volume 113 (2006) no. 8, pp. 715-732 | DOI | MR | Zbl
[17] Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Unione Mat. Ital., IV. Ser., Volume 7 (1973), pp. 285-301 | MR | Zbl
[18] La biforcazione nel caso variazionale, Conf. Semin. Mat. Univ. Bari, Volume 132 (1973), p. 14 | MR | Zbl
[19] SymPy: symbolic computing in Python, PeerJ Computer Science, Volume 3 (2017), e103 | DOI
[20] Photonic band-gap effects and magnetic activity in dielectric composites, J. Phys.: Condens. Matter, Volume 14 (2002) no. 15, pp. 4035-4044 | DOI
[21] Bifurcation of critical points for continuous families of functionals of Fredholm type, J. Fixed Point Theory Appl., Volume 13 (2013) no. 2, pp. 537-560 | DOI | MR | Zbl
[22] Some global results for nonlinear eigenvalue problems, J. Funct. Anal., Volume 7 (1971), pp. 487-513 | DOI | MR | Zbl
[23] Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, 1986, viii+100 pages | DOI
[24] The method of Nehari manifold, Handbook of nonconvex analysis and applications, International Press, 2010, pp. 597-632 | Zbl
[25] pde2path—a Matlab package for continuation and bifurcation in 2D elliptic systems, Numer. Math., Theory Methods Appl., Volume 7 (2014) no. 1, pp. 58-106 | DOI | MR | Zbl
Cité par Sources :