Soit la suite de Thue–Morse en . J.-P. Allouche et J. Shallit demandaient en 2003 si la complexité de facteurs de la sous-suite atteint la maximale. Le problème était résolu positivement par Y. Moshe en 2007. En fait, Y. Moshe avait démontré que pour tout avec et , toutes les sous-suites atteignent la complexité maximale. Ensuite il demandait si le résultat est aussi valable pour . Dans ce travail, nous allons donner une réponse positive au problème précédent.
Let be the Thue–Morse sequence in . J.-P. Allouche and J. Shallit asked in 2003 whether the subword complexity of the subsequence attains the maximal value. This problem was solved positively by Y. Moshe in 2007. Indeed Y. Moshe had shown that for all with and , all the subsequences attain the maximal subword complexity. Then he asked whether the same result holds for . In this work, we shall give a positive answer to the above problem.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_503_0, author = {Shen, Zhao}, title = {The subword complexity of polynomial subsequences of the {Thue{\textendash}Morse} sequence}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--511}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.321}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.321/} }
TY - JOUR AU - Shen, Zhao TI - The subword complexity of polynomial subsequences of the Thue–Morse sequence JO - Comptes Rendus. Mathématique PY - 2022 SP - 503 EP - 511 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.321/ DO - 10.5802/crmath.321 LA - en ID - CRMATH_2022__360_G5_503_0 ER -
%0 Journal Article %A Shen, Zhao %T The subword complexity of polynomial subsequences of the Thue–Morse sequence %J Comptes Rendus. Mathématique %D 2022 %P 503-511 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.321/ %R 10.5802/crmath.321 %G en %F CRMATH_2022__360_G5_503_0
Shen, Zhao. The subword complexity of polynomial subsequences of the Thue–Morse sequence. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 503-511. doi : 10.5802/crmath.321. http://www.numdam.org/articles/10.5802/crmath.321/
[1] Somme des chiffres et transcendance, Bull. Soc. Math. Fr., Volume 110 (1982), pp. 279-285 | DOI | Numdam | MR | Zbl
[2] Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003 | DOI | Zbl
[3] The number of different subwords of given length in the Morse–Hedlund sequence, Sibirsk. Zh. Issled. Oper., Volume 1 (1994) no. 2, pp. 3-7 | MR | Zbl
[4] Enumeration of factors in the Thue-Morse word, Discrete Appl. Math., Volume 24 (1989) no. 1-3, pp. 83-96 | DOI | MR | Zbl
[5] Congruences de sommes de chiffres de valeurs polynomiales, Bull. Lond. Math. Soc., Volume 38 (2006) no. 1, pp. 61-69 | MR | Zbl
[6] The sum-of-digits function of polynomial sequences, J. Lond. Math. Soc., Volume 84 (2011) no. 1, pp. 81-102 | DOI | MR | Zbl
[7] Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1967), pp. 259-265 | DOI | Zbl
[8] Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theor. Comput. Sci., Volume 63 (1989) no. 3, pp. 333-348 | DOI | MR | Zbl
[9] On the subword complexity of Thue-Morse polynomial extractions, Theor. Comput. Sci., Volume 389 (2007) no. 1-2, pp. 318-329 | DOI | MR | Zbl
[10] Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences. II, Isr. J. Math., Volume 220 (2017) no. 2, pp. 691-738 | DOI | MR | Zbl
[11] The sum of digits of polynomial values in arithmetic progressions, Funct. Approximatio, Comment. Math., Volume 47 (2012) no. 2, pp. 233-239 | MR | Zbl
Cité par Sources :