Théorie des nombres
The subword complexity of polynomial subsequences of the Thue–Morse sequence
[La complexité de facteurs des sous-suites polynomiales de la suite de Thue–Morse]
Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 503-511.

Soit t=(t(n)) n0 la suite de Thue–Morse en 0,1. J.-P. Allouche et J. Shallit demandaient en 2003 si la complexité de facteurs de la sous-suite (t(n 2 )) n0 atteint la maximale. Le problème était résolu positivement par Y. Moshe en 2007. En fait, Y. Moshe avait démontré que pour tout H[T] avec H() et degH=2, toutes les sous-suites (t(H(n))) n0 atteignent la complexité maximale. Ensuite il demandait si le résultat est aussi valable pour degH3. Dans ce travail, nous allons donner une réponse positive au problème précédent.

Let t=(t(n)) n0 be the Thue–Morse sequence in 0,1. J.-P. Allouche and J. Shallit asked in 2003 whether the subword complexity of the subsequence (t(n 2 )) n0 attains the maximal value. This problem was solved positively by Y. Moshe in 2007. Indeed Y. Moshe had shown that for all H[T] with H() and degH=2, all the subsequences (t(H(n))) n0 attain the maximal subword complexity. Then he asked whether the same result holds for degH3. In this work, we shall give a positive answer to the above problem.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.321
Shen, Zhao 1

1 Department of Mathematics, Tsinghua University, Beijing 100084, P. R. China
@article{CRMATH_2022__360_G5_503_0,
     author = {Shen, Zhao},
     title = {The subword complexity of polynomial subsequences of the {Thue{\textendash}Morse} sequence},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {503--511},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G5},
     year = {2022},
     doi = {10.5802/crmath.321},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.321/}
}
TY  - JOUR
AU  - Shen, Zhao
TI  - The subword complexity of polynomial subsequences of the Thue–Morse sequence
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 503
EP  - 511
VL  - 360
IS  - G5
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.321/
DO  - 10.5802/crmath.321
LA  - en
ID  - CRMATH_2022__360_G5_503_0
ER  - 
%0 Journal Article
%A Shen, Zhao
%T The subword complexity of polynomial subsequences of the Thue–Morse sequence
%J Comptes Rendus. Mathématique
%D 2022
%P 503-511
%V 360
%N G5
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.321/
%R 10.5802/crmath.321
%G en
%F CRMATH_2022__360_G5_503_0
Shen, Zhao. The subword complexity of polynomial subsequences of the Thue–Morse sequence. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 503-511. doi : 10.5802/crmath.321. http://www.numdam.org/articles/10.5802/crmath.321/

[1] Allouche, Jean-Paul Somme des chiffres et transcendance, Bull. Soc. Math. Fr., Volume 110 (1982), pp. 279-285 | DOI | Numdam | MR | Zbl

[2] Allouche, Jean-Paul; Shallit, Jeffrey Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003 | DOI | Zbl

[3] Avgustinovich, Sergeĭ V. The number of different subwords of given length in the Morse–Hedlund sequence, Sibirsk. Zh. Issled. Oper., Volume 1 (1994) no. 2, pp. 3-7 | MR | Zbl

[4] Brlek, Srećko Enumeration of factors in the Thue-Morse word, Discrete Appl. Math., Volume 24 (1989) no. 1-3, pp. 83-96 | DOI | MR | Zbl

[5] Dartyge, Cécile; Tenenbaum, Gérald Congruences de sommes de chiffres de valeurs polynomiales, Bull. Lond. Math. Soc., Volume 38 (2006) no. 1, pp. 61-69 | MR | Zbl

[6] Drmota, Michael; Mauduit, Christian; Rivat, Joël The sum-of-digits function of polynomial sequences, J. Lond. Math. Soc., Volume 84 (2011) no. 1, pp. 81-102 | DOI | MR | Zbl

[7] Gel’fond, Aleksandr O. Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1967), pp. 259-265 | DOI | Zbl

[8] de Luca, Aldo; Varricchio, Stefano Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theor. Comput. Sci., Volume 63 (1989) no. 3, pp. 333-348 | DOI | MR | Zbl

[9] Moshe, Yossi On the subword complexity of Thue-Morse polynomial extractions, Theor. Comput. Sci., Volume 389 (2007) no. 1-2, pp. 318-329 | DOI | MR | Zbl

[10] Müllner, Clemens; Spiegelhofer, Lukas Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences. II, Isr. J. Math., Volume 220 (2017) no. 2, pp. 691-738 | DOI | MR | Zbl

[11] Stoll, Thomas The sum of digits of polynomial values in arithmetic progressions, Funct. Approximatio, Comment. Math., Volume 47 (2012) no. 2, pp. 233-239 | MR | Zbl

Cité par Sources :