Let be a power of a prime number and be a -dimensional column vector space over a finite field . Assume that . In this paper we prove an Erdős–Ko–Rado theorem for intersecting sets of G and we show that every maximum intersecting set of is either a coset of the stabilizer of a point or a coset of , where , for some . It is also shown that every intersecting set of is contained in a maximum intersecting set.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_497_0, author = {Ahanjideh, Milad}, title = {On the {Largest} intersecting set in ${\protect \rm GL}_2(q)$ and some of its subgroups}, journal = {Comptes Rendus. Math\'ematique}, pages = {497--502}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.320}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.320/} }
TY - JOUR AU - Ahanjideh, Milad TI - On the Largest intersecting set in ${\protect \rm GL}_2(q)$ and some of its subgroups JO - Comptes Rendus. Mathématique PY - 2022 SP - 497 EP - 502 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.320/ DO - 10.5802/crmath.320 LA - en ID - CRMATH_2022__360_G5_497_0 ER -
%0 Journal Article %A Ahanjideh, Milad %T On the Largest intersecting set in ${\protect \rm GL}_2(q)$ and some of its subgroups %J Comptes Rendus. Mathématique %D 2022 %P 497-502 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.320/ %R 10.5802/crmath.320 %G en %F CRMATH_2022__360_G5_497_0
Ahanjideh, Milad. On the Largest intersecting set in ${\protect \rm GL}_2(q)$ and some of its subgroups. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 497-502. doi : 10.5802/crmath.320. http://www.numdam.org/articles/10.5802/crmath.320/
[1] Erdős–Ko–Rado theorem in some linear groups and some projective special linear group, Stud. Sci. Math. Hung., Volume 51 (2014) no. 1, pp. 83-91 | Zbl
[2] The Erdős–Ko–Rado property for some -transitive groups, Ann. Comb., Volume 19 (2015) no. 4, pp. 621-640 | DOI | Zbl
[3] The Erdős–Ko–Rado property for some permutation groups, Australas. J. Comb., Volume 61 (2015) no. 1, pp. 23-41 | Zbl
[4] Intersecting families of permutations, Eur. J. Comb., Volume 24 (2003) no. 7, pp. 881-890 | DOI | MR | Zbl
[5] Intersection theorems for systems of finite sets, Q. J. Math, Volume 12 (1961), pp. 313-320 | DOI | MR | Zbl
[6] On the maximum number of permutations with given maximal or minimal distance, J. Comb. Theory, Volume 22 (1977), pp. 352-360 | DOI | MR | Zbl
[7] A new proof of the Erdős–Ko–Rado theorem for intersecting families of permutations, Eur. J. Comb., Volume 30 (2009) no. 2, pp. 404-414 | DOI | Zbl
[8] Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Comb., Volume 14 (2007) no. 1, R25, 15 pages | MR | Zbl
[9] Stable sets of maximal size in Kneser-type graphs, Eur. J. Comb., Volume 25 (2004) no. 5, pp. 657-673 | DOI | MR | Zbl
[10] Characterization of intersecting families of maximum size in , J. Comb. Theory, Ser. A, Volume 157 (2018), pp. 461-499 | DOI | MR | Zbl
[11] An Erdős–Ko–Rado theorem for the group , Des. Codes Cryptography, Volume 87 (2019) no. 4, pp. 717-744 | DOI | Zbl
[12] An Erdős–Ko–Rado theorem for the derangement graph of acting on the projective line, J. Comb. Theory, Volume 118 (2011) no. 2, pp. 532-544 | DOI | Zbl
[13] An Erdős–Ko–Rado-type theorem for the derangement graph of acting on the projective plane,, SIAM J. Discrete Math., Volume 28 (2014) no. 2, pp. 918-941 | DOI | Zbl
[14] An Erdős–Ko–Rado theorem for finite -transitive groups, Eur. J. Comb., Volume 55 (2016), pp. 100-118 | DOI | Zbl
[15] The Erdős–Ko–Rado theorem for the derangement graph of the projective general linear group acting on the projective space, J. Comb. Theory, Volume 166 (2019), pp. 59-90 | DOI | Zbl
Cité par Sources :