On prouve l’existence d’éléments d’ordre infini dans certains groupes d’homotopie du groupe des contactomorphismes des sphères vrillées. En particulier, il s’en suit que le groupe des contactomorphismes de certaines sphères vrillées n’est pas homotopiquement équivalent à un groupe de Lie de dimension finie.
We show the existence of elements of infinite order in some homotopy groups of the contactomorphism group of overtwisted spheres. It follows in particular that the contactomorphism group of some high dimensional overtwisted spheres is not homotopically equivalent to a finite dimensional Lie group.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_2_189_0, author = {Fern\'andez, Eduardo and Gironella, Fabio}, title = {A remark on the contactomorphism group of overtwisted contact spheres}, journal = {Comptes Rendus. Math\'ematique}, pages = {189--196}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.32}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.32/} }
TY - JOUR AU - Fernández, Eduardo AU - Gironella, Fabio TI - A remark on the contactomorphism group of overtwisted contact spheres JO - Comptes Rendus. Mathématique PY - 2020 SP - 189 EP - 196 VL - 358 IS - 2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.32/ DO - 10.5802/crmath.32 LA - en ID - CRMATH_2020__358_2_189_0 ER -
%0 Journal Article %A Fernández, Eduardo %A Gironella, Fabio %T A remark on the contactomorphism group of overtwisted contact spheres %J Comptes Rendus. Mathématique %D 2020 %P 189-196 %V 358 %N 2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.32/ %R 10.5802/crmath.32 %G en %F CRMATH_2020__358_2_189_0
Fernández, Eduardo; Gironella, Fabio. A remark on the contactomorphism group of overtwisted contact spheres. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 189-196. doi : 10.5802/crmath.32. http://www.numdam.org/articles/10.5802/crmath.32/
[1] The non-finite homotopy type of some diffeomorphism groups, Topology, Volume 11 (1972), pp. 1-49 | DOI | MR | Zbl
[2] Existence and classification of overtwisted contact structures in all dimensions, Acta Math., Volume 215 (2015) no. 2, pp. 281-361 | DOI | MR | Zbl
[3] The stable homotopy of the classical groups, Ann. Math., Volume 70 (1959), pp. 313-337 | DOI | MR | Zbl
[4] Symplectomorphisms of exotic discs, J. Éc. Polytech., Math., Volume 5 (2018), pp. 289-316 (With an appendix by Sylvain Courte) | DOI | MR | Zbl
[5] Loose Engel structures, Compos. Math., Volume 156 (2020) no. 2, pp. 412-434 | DOI | MR | Zbl
[6] A remark on the Reeb flow for spheres, J. Symplectic Geom., Volume 12 (2014) no. 4, pp. 657-671 | DOI | MR | Zbl
[7] Chern-Weil theory and the group of strict contactomorphisms, J. Topol. Anal., Volume 8 (2016) no. 1, pp. 59-87 | DOI | MR | Zbl
[8] The diffeotopy group of via contact topology, Compos. Math., Volume 146 (2010) no. 4, pp. 1096-1112 | DOI | MR | Zbl
[9] Legendrian knots in overtwisted contact structures on , Ann. Global Anal. Geom., Volume 19 (2001) no. 3, pp. 293-305 | DOI | MR | Zbl
[10] Classification of overtwisted contact structures on -manifolds, Invent. Math., Volume 98 (1989) no. 3, pp. 623-637 | DOI | MR | Zbl
[11] Contact -manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier, Volume 42 (1992) no. 1-2, pp. 165-192 | DOI | MR | Zbl
[12] On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Algebraic and geometric topology (Stanford, Calif., 1976), Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 32, American Mathematical Society, 1978, pp. 325-337 | DOI | MR | Zbl
[13] Algebraic models in geometry, Oxford Graduate Texts in Mathematics, 17, Oxford University Press, 2008, xxii+460 pages | MR | Zbl
[14] An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008, xvi+440 pages | DOI | MR | Zbl
[15] On the topology of the space of contact structures on torus bundles, Bull. Lond. Math. Soc., Volume 36 (2004) no. 5, pp. 640-646 | DOI | MR | Zbl
[16] Examples of contact mapping classes of infinite order in all dimensions (2018) (https://arxiv.org/abs/1809.07762, to appear in Math. Res. Lett.) | Zbl
[17] Examples of nontrivial contact mapping classes for overtwisted contact manifolds in all dimensions, Algebr. Geom. Topol., Volume 19 (2019) no. 3, pp. 1207-1227 | DOI | MR | Zbl
[18] Sur les transformations de contact au-dessus des surfaces, Essays on geometry and related topics, Vol. 1, 2 (Monographies de l’Enseignement Mathématique), Volume 38, L’Enseignement Mathématique, 2001, pp. 329-350 | MR | Zbl
[19] On the contact mapping class group of Legendrian circle bundles, Compos. Math., Volume 153 (2017) no. 2, pp. 294-312 | DOI | MR | Zbl
[20] Some calculations of homotopy groups of symmetric spaces, Trans. Am. Math. Soc., Volume 106 (1963), pp. 174-184 | DOI | MR | Zbl
[21] A proof of the Smale conjecture, , Ann. Math., Volume 117 (1983) no. 3, pp. 553-607 | DOI | MR | Zbl
[22] Homotopy groups of symmetric spaces , J. Fac. Sci., Shinshu Univ., Volume 13 (1978) no. 2, pp. 103-120 | MR | Zbl
[23] On the contact mapping class group of the contactization of the -Milnor fiber, Ann. Math. Qué., Volume 42 (2018) no. 1, pp. 79-94 | DOI | MR | Zbl
[24] Obstructions to the existence of almost complex structures, Bull. Am. Math. Soc., Volume 67 (1961), pp. 559-564 | DOI | MR | Zbl
[25] Natural fibrations in contact topology, 2015 (Available at https://www.math.u-psud.fr/~pmassot/files/exposition/fibrations.pdf)
[26] Examples of non-trivial contact mapping classes in all dimensions, Int. Math. Res. Not., Volume 2016 (2016) no. 15, pp. 4784-4806 | DOI | MR | Zbl
[27] Remarks on homotopy groups of symmetric spaces, Math. J. Okayama Univ., Volume 32 (1990), pp. 159-164 | MR | Zbl
[28] Non-loose unknots, overtwisted discs, and the contact mapping class group of , Geom. Funct. Anal., Volume 28 (2018) no. 1, pp. 228-288 | DOI | MR | Zbl
[29] Automorphisms of manifolds, Surveys on surgery theory, Vol. 2 (Annals of Mathematics Studies), Volume 149, Princeton University Press, 2001, pp. 165-220 | MR | Zbl
Cité par Sources :