Let be an algebraically closed field and a finite-dimensional -algebra. In this note, we determine complexes which compute the Hochschild homology of the canonical dg enhancement of the bounded derived category of and of the canonical dg enhancement of the singularity category of . As an application, we obtain a new approach to the computation of Hochschild homology of Leavitt path algebras.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_491_0, author = {Wang, Yu and Arunachalam, Umamaheswaran and Keller, Bernhard}, title = {On the {Hochschild} homology of singularity categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {491--496}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.318}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.318/} }
TY - JOUR AU - Wang, Yu AU - Arunachalam, Umamaheswaran AU - Keller, Bernhard TI - On the Hochschild homology of singularity categories JO - Comptes Rendus. Mathématique PY - 2022 SP - 491 EP - 496 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.318/ DO - 10.5802/crmath.318 LA - en ID - CRMATH_2022__360_G5_491_0 ER -
%0 Journal Article %A Wang, Yu %A Arunachalam, Umamaheswaran %A Keller, Bernhard %T On the Hochschild homology of singularity categories %J Comptes Rendus. Mathématique %D 2022 %P 491-496 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.318/ %R 10.5802/crmath.318 %G en %F CRMATH_2022__360_G5_491_0
Wang, Yu; Arunachalam, Umamaheswaran; Keller, Bernhard. On the Hochschild homology of singularity categories. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 491-496. doi : 10.5802/crmath.318. http://www.numdam.org/articles/10.5802/crmath.318/
[1] Tensor products of Leavitt path algebras, Proc. Am. Math. Soc., Volume 141 (2013) no. 8, pp. 2629-2639 | MR | Zbl
[2] Calabi–Yau algebras and superpotentials, Sel. Math., New Ser., Volume 21 (2015) no. 2, pp. 555-603 | DOI | MR | Zbl
[3] Maximal Cohen–Macaulay modules and Tate cohomology, Mathematical Surveys and Monographs, 262, American Mathematical Society, 2021 (with appendices by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz.) | DOI | Zbl
[4] The singularity category of a quadratic monomial algebra, Q. J. Math, Volume 69 (2018) no. 3, pp. 1015-1033 | DOI | MR | Zbl
[5] The dg Leavitt algebra, singular Yoneda category and singularity category (2021) (https://arxiv.org/abs/2109.11278, with an appendix by B. Keller and Yu Wang)
[6] Homotopy categories, Leavitt path algebras, and Gorenstein projective modules, Int. Math. Res. Not., Volume 2015 (2015) no. 10, pp. 2597-2633 | DOI | MR | Zbl
[7] Hochschild (co)homology of Koszul dual pairs, J. Noncommut. Geom., Volume 13 (2019) no. 1, pp. 59-85 | DOI | MR | Zbl
[8] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[9] Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, Volume 123 (1998) no. 1-3, pp. 223-273 | DOI | MR | Zbl
[10] On differential graded categories, Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, European Mathematical Society, 2006, pp. 151-190 | Zbl
[11] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | Zbl
[12] Category equivalences involving graded modules over path algebras of quivers, Adv. Math., Volume 230 (2012) no. 4-6, pp. 1780-1810 | DOI | MR | Zbl
Cité par Sources :