In this note we give a description up to a quasi-finite morphism of the absolute sets of simple cohomologically rigid local systems on a smooth complex quasi-projective algebraic variety. In dimension one or rank two, this proves a conjecture of Budur–Wang on the structure of these sets.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_467_0, author = {Budur, Nero and Lerer, Leonardo A. and Wang, Haopeng}, title = {Note on absolute sets of rigid local systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {467--474}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.315}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.315/} }
TY - JOUR AU - Budur, Nero AU - Lerer, Leonardo A. AU - Wang, Haopeng TI - Note on absolute sets of rigid local systems JO - Comptes Rendus. Mathématique PY - 2022 SP - 467 EP - 474 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.315/ DO - 10.5802/crmath.315 LA - en ID - CRMATH_2022__360_G5_467_0 ER -
%0 Journal Article %A Budur, Nero %A Lerer, Leonardo A. %A Wang, Haopeng %T Note on absolute sets of rigid local systems %J Comptes Rendus. Mathématique %D 2022 %P 467-474 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.315/ %R 10.5802/crmath.315 %G en %F CRMATH_2022__360_G5_467_0
Budur, Nero; Lerer, Leonardo A.; Wang, Haopeng. Note on absolute sets of rigid local systems. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 467-474. doi : 10.5802/crmath.315. http://www.numdam.org/articles/10.5802/crmath.315/
[1] Perverses sheaves (Faisceaux pervers). Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, 100, Société Mathématique de France, 1982 | Numdam | Zbl
[2] Absolute sets of rigid local systems (2021) (https://arxiv.org/abs/2104.00168v1)
[3] Absolute sets and the decomposition theorem, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 2, pp. 469-536 | DOI | MR | Zbl
[4] On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math., Volume 144 (2008) no. 5, pp. 1271-1331 | DOI | MR | Zbl
[5] Density of arithmetic representations of function fields (2020) (https://arxiv.org/abs/2005.12819v1)
[6] -modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkhäuser, 2008 | DOI | Zbl
[7] Rigid local systems, Annals of Mathematics Studies, 139, Princeton University Press, 1996 | DOI | Zbl
[8] Motivic measures and stable birational geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 85-95 | DOI | MR | Zbl
[9] Motivic measures, Séminaire Bourbaki, Vol. 1999/2000. Exposés 865-879 (Astérisque), Volume 276, Société Mathématique de France, 2002, pp. 267-297 | Numdam | Zbl
[10] Moduli of semistable logarithmic connections, J. Am. Math. Soc., Volume 6 (1993) no. 3, pp. 597-609 | DOI | MR | Zbl
[11] Moduli of pre--modules, perverse sheaves and the Riemann–Hilbert morphism. I, Math. Ann., Volume 306 (1996) no. 1, pp. 47-73 | DOI | MR | Zbl
[12] Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 3, pp. 361-401 | DOI | Numdam | MR | Zbl
[13] Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math., Inst. Hautes Étud. Sci., Volume 79 (1994), pp. 47-129 | DOI | Numdam | MR | Zbl
Cité par Sources :