Let be a real algebraic number greater than . We establish an effective lower bound for the distance between an integral power of and its nearest integer.
Révisé le :
Accepté le :
Publié le :
Mots clés : Approximation to algebraic numbers, Linear forms in logarithms, Pisot number
@article{CRMATH_2022__360_G5_459_0, author = {Bugeaud, Yann}, title = {Fractional parts of powers of real algebraic numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--466}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.314}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.314/} }
TY - JOUR AU - Bugeaud, Yann TI - Fractional parts of powers of real algebraic numbers JO - Comptes Rendus. Mathématique PY - 2022 SP - 459 EP - 466 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.314/ DO - 10.5802/crmath.314 LA - en ID - CRMATH_2022__360_G5_459_0 ER -
Bugeaud, Yann. Fractional parts of powers of real algebraic numbers. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 459-466. doi : 10.5802/crmath.314. http://www.numdam.org/articles/10.5802/crmath.314/
[1] Fractional parts of powers of rationals, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 269-279 | DOI | MR | Zbl
[2] Applications of the hypergeometric method to the generalized Ramanujan–Nagell equation, Ramanujan J., Volume 6 (2002) no. 2, pp. 209-270 | DOI | MR | Zbl
[3] Effective results for restricted rational approximation to quadratic irrationals, Acta Arith., Volume 155 (2012) no. 3, pp. 259-269 | DOI | MR | Zbl
[4] Fractional parts of powers of rationals, Math. Proc. Camb. Philos. Soc., Volume 90 (1981), pp. 13-20 | DOI | MR | Zbl
[5] On the generalized Ramanujan-Nagell equation I, Acta Arith., Volume 38 (1981), pp. 389-410 | DOI | MR | Zbl
[6] Irreducible polynomials with many roots of maximal modulus, Acta Arith., Volume 68 (1994) no. 1, pp. 85-88 | DOI | MR | Zbl
[7] Linear forms in two -adic logarithms and applications to Diophantine problems, Compos. Math., Volume 132 (2002) no. 2, pp. 137-158 | DOI | MR | Zbl
[8] Linear forms in logarithms and applications, IRMA Lectures in Mathematics and Theoretical Physics, 28, European Mathematical Society, 2018 | DOI | Zbl
[9] Effective simultaneous rational approximation to pairs of real quadratic numbers, Mosc. J. Comb. Number Theory, Volume 9 (2020) no. 4, pp. 353-360 | DOI | MR | Zbl
[10] On a problem of Mahler and Szekeres on approximation by roots of integers, Mich. Math. J., Volume 56 (2008) no. 3, pp. 703-715 | MR | Zbl
[11] On the rational approximations to the powers of an algebraic number: solution of two problems of Mahler and Mendès France, Acta Math., Volume 193 (2004) no. 2, pp. 175-191 | DOI
[12] Roots of unity as quotients of two conjugate algebraic numbers, Glas. Mat., III. Ser., Volume 52 (2017) no. 2, pp. 235-240 | DOI | MR | Zbl
[13] Unit equations in Diophantine number theory, Cambridge Studies in Advanced Mathematics, 146, Cambridge University Press, 2015 | DOI
[14] Improved estimate for a linear form of the logarithms of algebraic numbers, Mat. Sb., Volume 77 (1968), pp. 256-270 English translation in Math. USSR. Sb. 6 (1968), p. 393–406
[15] On the fractional parts of the powers of a rational number, II, Mathematika, Volume 4 (1957), pp. 122-124 | DOI | MR | Zbl
[16] On the approximation of real numbers by roots of integers, Acta Arith., Volume 12 (1967), pp. 315-320 | DOI | MR | Zbl
[17] Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, Grundlehren der Mathematischen Wissenschaften, 326, Springer, 2000 | DOI
[18] –adic logarithmic forms and group varieties, III, Forum Math., Volume 19 (2007) no. 2, pp. 187-280 | MR | Zbl
[19] A new lower bound for , J. Théor. Nombres Bordeaux, Volume 19 (2007) no. 1, pp. 311-323 | DOI | Numdam | Zbl
Cité par Sources :