Soit un des quotients d’Atkin–Lehner d’une courbe tel que est de genre et sa jacobienne est absolument simple. On démontre que le groupe de Shafarevich–Tate est trivial. Ceci vérifie la conjecture BSD forte pour .
Let be one of the Atkin–Lehner quotients of a curve such that has genus and its Jacobian variety is absolutely simple. We show that the Shafarevich–Tate group is trivial. This verifies the strong BSD conjecture for .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_483_0, author = {Keller, Timo and Stoll, Michael}, title = {Exact verification of the strong {BSD} conjecture for some absolutely simple abelian surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--489}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.313}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.313/} }
TY - JOUR AU - Keller, Timo AU - Stoll, Michael TI - Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces JO - Comptes Rendus. Mathématique PY - 2022 SP - 483 EP - 489 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.313/ DO - 10.5802/crmath.313 LA - en ID - CRMATH_2022__360_G5_483_0 ER -
%0 Journal Article %A Keller, Timo %A Stoll, Michael %T Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces %J Comptes Rendus. Mathématique %D 2022 %P 483-489 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.313/ %R 10.5802/crmath.313 %G en %F CRMATH_2022__360_G5_483_0
Keller, Timo; Stoll, Michael. Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 483-489. doi : 10.5802/crmath.313. http://www.numdam.org/articles/10.5802/crmath.313/
[1] Numerical verification of the Birch and Swinnerton–Dyer conjecture for hyperelliptic curves of higher genus over up to squares, Exp. Math., Volume 31 (2022) no. 1, pp. 138-145 | DOI | MR
[2] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3–4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[3] On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[4] A nonvanishing theorem for derivatives of automorphic -functions with applications to elliptic curves, Bull. Am. Math. Soc., Volume 21 (1989) no. 1, pp. 89-93 | DOI | MR | Zbl
[5] On the Iwasawa main conjectures for modular forms at non-ordinary primes, 2018 (https://arxiv.org/abs/1804.10993)
[6] On the surjectivity of the Galois representations associated to non-CM elliptic curves, Can. Math. Bull., Volume 48 (2005) no. 1, pp. 16-31 (With an appendix by Ernst Kani) | DOI | MR | Zbl
[7] Second isogeny descents and the Birch and Swinnerton–Dyer conjectural formula, J. Algebra, Volume 372 (2012), pp. 673-701 | DOI | MR | Zbl
[8] Explicit determination of the images of the Galois representations attached to abelian surfaces with , Exp. Math., Volume 11 (2002) no. 4, pp. 503-512 | DOI | MR | Zbl
[9] Empirical evidence for the Birch and Swinnerton–Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comput., Volume 70 (2001) no. 236, pp. 1675-1697 | DOI | MR | Zbl
[10] Computational verification of the Birch and Swinnerton–Dyer conjecture for individual elliptic curves, Math. Comput., Volume 78 (2009) no. 268, pp. 2397-2425 | DOI | MR | Zbl
[11] Heegner points and derivatives of -series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | DOI | MR | Zbl
[12] Table of quotient curves of modular curves with genus , Proc. Japan Acad., Ser. A, Volume 71 (1995) no. 10, pp. 235-239 | MR | Zbl
[13] Finiteness of the Shafarevich–Tate group and the group of rational points for some modular abelian varieties, Algebra Anal., Volume 1 (1989) no. 5, pp. 171-196 | MR | Zbl
[14] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (With an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl
[15] Explicit isogeny descent on elliptic curves, Math. Comput., Volume 82 (2013) no. 281, pp. 513-529 | DOI | MR | Zbl
[16] Canonical heights on genus-2 Jacobians, Algebra Number Theory, Volume 10 (2016) no. 10, pp. 2153-2234 | DOI | MR | Zbl
[17] How to do a -descent on an elliptic curve, Trans. Am. Math. Soc., Volume 356 (2004) no. 3, pp. 1209-1231 | DOI | MR | Zbl
[18] Multiplicative reduction and the cyclotomic main conjecture for , Pac. J. Math., Volume 283 (2016) no. 1, pp. 171-200 | DOI | MR | Zbl
[19] The Iwasawa main conjectures for , Invent. Math., Volume 195 (2014) no. 1, p. 1–277 | DOI | Zbl
[20] Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith., Volume 98 (2001) no. 3, pp. 245-277 | DOI | MR | Zbl
[21] Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl
[22] Genus 2 curves over (from the database “L-functions and Modular Forms Database”, https://www.lmfdb.org/Genus2Curve/Q/)
[23] Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie, Compos. Math., Volume 54 (1985) no. 2, pp. 173-242 | Numdam | Zbl
[24] -dimensional simple factors of , Manuscr. Math., Volume 87 (1995) no. 2, p. 179–197 | DOI | MR | Zbl
[25] Modular elliptic curves and Fermat’s last theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cité par Sources :