Probabilités
Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d ()
[Inégalités de type Berry–Esseen pour les coefficients matriciels et pour le rayon spectral de la marche aléatoire gauche sur GL d ()]
Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 475-482.

Nous donnons des vitesses de convergence dans le théorème limite central pour les coefficients matriciels et pour le rayon spectral de la marche aléatoire gauche sur GL d (), en supposant l’existence d’un moment exponentiel ou polynomial.

We give rates of convergence in the Central Limit Theorem for the matrix coefficients and the spectral radius of the left random walk on GL d (), assuming the existence of an exponential or polynomial moment.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.312
Classification : 60F05, 60B15, 60G50
Cuny, Christophe 1 ; Dedecker, Jérôme 2 ; Merlevède, Florence 3 ; Peligrad, Magda 4

1 Univ. Brest, LMBA, UMR 6205 CNRS, 6 avenue Victor Le Gorgeu, 29238 Brest, France
2 Université Paris Cité, MAP5, UMR 8145 CNRS, 45 rue des Saints-Pères, F-75006 Paris, France
3 Univ. Gustave Eiffel, Univ. Paris Est Créteil, UMR 8050 CNRS, LAMA, F-77454 Marne-la-Vallée, France
4 Department of Mathematical Sciences, University of Cincinnati, PO Box 210025, Cincinnati, Oh 45221-0025, USA
@article{CRMATH_2022__360_G5_475_0,
     author = {Cuny, Christophe and Dedecker, J\'er\^ome and Merlev\`ede, Florence and Peligrad, Magda},
     title = {Berry{\textendash}Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--482},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G5},
     year = {2022},
     doi = {10.5802/crmath.312},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.312/}
}
TY  - JOUR
AU  - Cuny, Christophe
AU  - Dedecker, Jérôme
AU  - Merlevède, Florence
AU  - Peligrad, Magda
TI  - Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 475
EP  - 482
VL  - 360
IS  - G5
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.312/
DO  - 10.5802/crmath.312
LA  - en
ID  - CRMATH_2022__360_G5_475_0
ER  - 
%0 Journal Article
%A Cuny, Christophe
%A Dedecker, Jérôme
%A Merlevède, Florence
%A Peligrad, Magda
%T Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$
%J Comptes Rendus. Mathématique
%D 2022
%P 475-482
%V 360
%N G5
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.312/
%R 10.5802/crmath.312
%G en
%F CRMATH_2022__360_G5_475_0
Cuny, Christophe; Dedecker, Jérôme; Merlevède, Florence; Peligrad, Magda. Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 475-482. doi : 10.5802/crmath.312. http://www.numdam.org/articles/10.5802/crmath.312/

[1] Aoun, Richard The central limit theorem for eigenvalues, Proc. Am. Math. Soc., Volume 149 (2021) no. 2, pp. 859-873 | DOI | MR | Zbl

[2] Benoist, Yves; Quint, Jean-François Central limit theorem for linear groups, Ann. Probab., Volume 44 (2016) no. 2, pp. 1308-1340 | MR | Zbl

[3] Benoist, Yves; Quint, Jean-François Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 62, Springer, 2016 | DOI | Zbl

[4] Bougerol, Philippe; Lacroix, Jean Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985 | DOI | Zbl

[5] Cuny, Christophe; Dedecker, Jérôme; Jan, Christophe Limit theorems for the left random walk on GL d (), Ann. Inst. Henri Poincaré, Probab. Stat., Volume 53 (2017) no. 4, pp. 1839-1865 | MR | Zbl

[6] Cuny, Christophe; Dedecker, Jérôme; Merlevède, Florence Large and moderate deviations for the left random walk on GL d (), ALEA, Lat. Am. J. Probab. Math. Stat., Volume 14 (2017) no. 1, pp. 503-527 | DOI | Zbl

[7] Cuny, Christophe; Dedecker, Jérôme; Merlevède, Florence; Peligrad, Magda Berry–Esseen type bounds for the left random walk on GL d () under polynomial moment conditions (2021) (https://hal.archives-ouvertes.fr/hal-03329189/document)

[8] Dinh, Tien-Cuong; Kaufmann, Lucas; Wu, Hao Berry–Esseen bound and local limit theorem for the coefficients of products of random matrices (2021) (https://arxiv.org/abs/2110.09032)

[9] Dinh, Tien-Cuong; Kaufmann, Lucas; Wu, Hao Random walks on SL 2 (): spectral gap and local limit theorems (2021) (https://arxiv.org/abs/2106.04019)

[10] Furstenberg, Hillel; Kesten, Harry Products of Random Matrices, Ann. Math. Stat., Volume 31 (1960) no. 2, pp. 457-469 | DOI | MR | Zbl

[11] Guivarc’h, Yves Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 3, pp. 483-512 | DOI | Zbl

[12] Hörmann, Siegfried Berry–Esseen bounds for econometric time series, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 6 (2009), pp. 377-397 | MR | Zbl

[13] Le Page, Emile Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) (Lecture Notes in Mathematics), Volume 928, Springer, 1982, pp. 258-303 | DOI | Zbl

[14] Xiao, Hui; Grama, Ion; Liu, Quansheng Berry–Esseen bounds and moderate deviations for the random walk on GL d (), Stochastic Processes Appl., Volume 142 (2021), pp. 293-318 | DOI | Zbl

[15] Xiao, Hui; Grama, Ion; Liu, Quansheng Limit theorems for the coefficients of random walks on the general linear group (2021) (https://hal.archives-ouvertes.fr/hal-03438876/document)

Cité par Sources :