Dans cette note, on observe que les fonctions propres du laplacien ne sont pas équidistribuées à l’échelle de Planck. De plus, l’équidistribution à la même échelle n’est plus valable autour des points où les fonctions propres ont des valeurs grandes.
In this note, we make an observation that Laplacian eigenfunctions fail equidistribution at the Planck scale. Furthermore, equidistribution at the same scale also fails around the points where the eigenfunctions have large values.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_451_0, author = {Han, Xiaolong}, title = {From nodal points to non-equidistribution at the {Planck} scale}, journal = {Comptes Rendus. Math\'ematique}, pages = {451--458}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.311}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.311/} }
TY - JOUR AU - Han, Xiaolong TI - From nodal points to non-equidistribution at the Planck scale JO - Comptes Rendus. Mathématique PY - 2022 SP - 451 EP - 458 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.311/ DO - 10.5802/crmath.311 LA - en ID - CRMATH_2022__360_G5_451_0 ER -
%0 Journal Article %A Han, Xiaolong %T From nodal points to non-equidistribution at the Planck scale %J Comptes Rendus. Mathématique %D 2022 %P 451-458 %V 360 %N G5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.311/ %R 10.5802/crmath.311 %G en %F CRMATH_2022__360_G5_451_0
Han, Xiaolong. From nodal points to non-equidistribution at the Planck scale. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 451-458. doi : 10.5802/crmath.311. http://www.numdam.org/articles/10.5802/crmath.311/
[1] Lower bounds for nodal sets of eigenfunctions, Commun. Math. Phys., Volume 306 (2011) no. 3, pp. 777-784 | DOI | MR | Zbl
[2] Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, 1, Springer, 1990 | Zbl
[3] Small scale quantum ergodicity in negatively curved manifolds, Nonlinearity, Volume 28 (2015) no. 9, pp. 3263-3288 | MR | Zbl
[4] norms, nodal sets, and quantum ergodicity, Adv. Math., Volume 290 (2016), pp. 938-966 | DOI | MR | Zbl
[5] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[6] Equidistribution in shrinking sets and -norm bounds for automorphic forms, Math. Ann., Volume 371 (2018) no. 3-4, pp. 1497-1543 | DOI | MR | Zbl
[7] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 | DOI | Zbl
[8] Small scale equidistribution of eigenfunctions on the torus, Commun. Math. Phys., Volume 350 (2017) no. 1, pp. 279-300 | DOI | MR | Zbl
[9] Large values of eigenfunctions on arithmetic hyperbolic surfaces, Duke Math. J., Volume 155 (2010) no. 2, pp. 365-401 | MR | Zbl
[10] Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, 1, International Press, 1994 | Zbl
[11] The asymptotic multiplicity of the spectrum of the Laplace operator, Usp. Mat. Nauk, Volume 30 (1975) no. 4(184), pp. 265-266 | MR | Zbl
[12] Localized -estimates of eigenfunctions: a note on an article of Hezari and Rivière, Adv. Math., Volume 289 (2016), pp. 384-396 | DOI | MR | Zbl
[13] Lower bounds on the Hausdorff measure of nodal sets, Math. Res. Lett., Volume 18 (2011) no. 1, pp. 25-37 | DOI | MR | Zbl
[14] Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132 | MR | Zbl
[15] Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 | DOI | Zbl
[16] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | MR | Zbl
[17] Eigenfunctions of the Laplacian on a Riemannian manifold, CBMS Regional Conference Series in Mathematics, 125, American Mathematical Society, 2017 | DOI | Zbl
[18] Mathematics of quantum chaos in 2019, Notices Am. Math. Soc., Volume 66 (2019) no. 9, pp. 1412-1422 | MR | Zbl
Cité par Sources :