We are concerned with the determination of the reachable states for the distributed control of the heat equation on an interval. We consider either periodic boundary conditions or homogeneous Dirichlet boundary conditions. We prove that for a distributed control, the reachable states are in the Sobolev space and that they have complex analytic extensions on squares whose horizontal diagonals are regions where no control is applied.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.310
@article{CRMATH_2022__360_G6_627_0, author = {Chen, Mo and Rosier, Lionel}, title = {Reachable states for the distributed control of the heat equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {627--639}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.310}, zbl = {07547262}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.310/} }
TY - JOUR AU - Chen, Mo AU - Rosier, Lionel TI - Reachable states for the distributed control of the heat equation JO - Comptes Rendus. Mathématique PY - 2022 SP - 627 EP - 639 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.310/ DO - 10.5802/crmath.310 LA - en ID - CRMATH_2022__360_G6_627_0 ER -
%0 Journal Article %A Chen, Mo %A Rosier, Lionel %T Reachable states for the distributed control of the heat equation %J Comptes Rendus. Mathématique %D 2022 %P 627-639 %V 360 %N G6 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.310/ %R 10.5802/crmath.310 %G en %F CRMATH_2022__360_G6_627_0
Chen, Mo; Rosier, Lionel. Reachable states for the distributed control of the heat equation. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 627-639. doi : 10.5802/crmath.310. http://www.numdam.org/articles/10.5802/crmath.310/
[1] Exact controllability of the linear Zakharov–Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 25 (2020) no. 10, pp. 3889-3916 | MR | Zbl
[2] On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., Volume 56 (2018) no. 3, pp. 1692-1715 | DOI | MR | Zbl
[3] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998
[4] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971) no. 4, pp. 272-292 | DOI | MR | Zbl
[5] Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, 1996
[6] From the reachable space of the heat equation to Hilbert spaces of holomorphic functions, J. Eur. Math. Soc., Volume 22 (2020) no. 10, pp. 3417-3440 | DOI | MR | Zbl
[7] Separation of singularities for the Bergman space and application to control theory, J. Math. Pures Appl., Volume 150 (2021), pp. 181-201 | DOI | MR | Zbl
[8] Exact controllability of semilinear heat equations in spaces of analytic functions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 4, pp. 1047-1073 | DOI | MR | Zbl
[9] Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1, pp. 1-2 | Zbl
[10] On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J., Volume 154 (1999), pp. 1-29 | DOI | MR
[11] Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., Volume 57 (2019) no. 4, pp. 2467-2486 | DOI | MR | Zbl
[12] On the reachable states for the boundary control of the heat equation, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 2, pp. 181-216 | DOI | MR | Zbl
[13] Reachable states and holomorphic function spaces for the 1-D heat equation, J. Funct. Anal., Volume 280 (2021) no. 7, 108852, 18 pages | MR | Zbl
[14] Analytic properties of heat equation solutions and reachable sets (2006) (https://arxiv.org/abs/2006.05762v1)
Cité par Sources :