Théorie du contrôle
Reachable states for the distributed control of the heat equation
Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 627-639.

We are concerned with the determination of the reachable states for the distributed control of the heat equation on an interval. We consider either periodic boundary conditions or homogeneous Dirichlet boundary conditions. We prove that for a L 2 distributed control, the reachable states are in the Sobolev space H 1 and that they have complex analytic extensions on squares whose horizontal diagonals are regions where no control is applied.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.310
Classification : 35K40, 93B05
Chen, Mo 1 ; Rosier, Lionel 2

1 School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, P. R. China
2 Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées J. Liouville, BP 699, F-62228 Calais, France
@article{CRMATH_2022__360_G6_627_0,
     author = {Chen, Mo and Rosier, Lionel},
     title = {Reachable states for the distributed control of the heat equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {627--639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G6},
     year = {2022},
     doi = {10.5802/crmath.310},
     zbl = {07547262},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.310/}
}
TY  - JOUR
AU  - Chen, Mo
AU  - Rosier, Lionel
TI  - Reachable states for the distributed control of the heat equation
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 627
EP  - 639
VL  - 360
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.310/
DO  - 10.5802/crmath.310
LA  - en
ID  - CRMATH_2022__360_G6_627_0
ER  - 
%0 Journal Article
%A Chen, Mo
%A Rosier, Lionel
%T Reachable states for the distributed control of the heat equation
%J Comptes Rendus. Mathématique
%D 2022
%P 627-639
%V 360
%N G6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.310/
%R 10.5802/crmath.310
%G en
%F CRMATH_2022__360_G6_627_0
Chen, Mo; Rosier, Lionel. Reachable states for the distributed control of the heat equation. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 627-639. doi : 10.5802/crmath.310. http://www.numdam.org/articles/10.5802/crmath.310/

[1] Chen, Mo; Rosier, Lionel Exact controllability of the linear Zakharov–Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 25 (2020) no. 10, pp. 3889-3916 | MR | Zbl

[2] Dardé, Jérémi; Ervedoza, Sylvain On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., Volume 56 (2018) no. 3, pp. 1692-1715 | DOI | MR | Zbl

[3] Evans, Lawrence C. Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998

[4] Fattorini, Hector O.; Russell, Donald L. Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971) no. 4, pp. 272-292 | DOI | MR | Zbl

[5] Fursikov, Andreĭ V.; Imanuvilov, Oleg Yu. Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, 1996

[6] Hartmann, Andreas; Kellay, Karim; Tucsnak, Marius From the reachable space of the heat equation to Hilbert spaces of holomorphic functions, J. Eur. Math. Soc., Volume 22 (2020) no. 10, pp. 3417-3440 | DOI | MR | Zbl

[7] Hartmann, Andreas; Orsoni, Marcu-Antone Separation of singularities for the Bergman space and application to control theory, J. Math. Pures Appl., Volume 150 (2021), pp. 181-201 | DOI | MR | Zbl

[8] Laurent, Camille; Rosier, Lionel Exact controllability of semilinear heat equations in spaces of analytic functions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 4, pp. 1047-1073 | DOI | MR | Zbl

[9] Lebeau, Gilles; Robbiano, Luc Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1, pp. 1-2 | Zbl

[10] Lutz, Donald A.; Miyake, Megumu; Schäfke, Reinhard On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J., Volume 154 (1999), pp. 1-29 | DOI | MR

[11] Martin, Philippe; Rivas, Ivonne; Rosier, Lionel; Rouchon, Pierre Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., Volume 57 (2019) no. 4, pp. 2467-2486 | DOI | MR | Zbl

[12] Martin, Philippe; Rosier, Lionel; Rouchon, Pierre On the reachable states for the boundary control of the heat equation, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 2, pp. 181-216 | DOI | MR | Zbl

[13] Orsoni, Marcu-Antone Reachable states and holomorphic function spaces for the 1-D heat equation, J. Funct. Anal., Volume 280 (2021) no. 7, 108852, 18 pages | MR | Zbl

[14] Strohmaier, Alexander; Waters, Alden Analytic properties of heat equation solutions and reachable sets (2006) (https://arxiv.org/abs/2006.05762v1)

Cité par Sources :