Let be a smooth projective surface with . We show how to use derived categorical methods to study the geometry of certain special iterated Hilbert schemes associated to by showing that they contain a smooth connected component isomorphic to .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G5_425_0, author = {Reede, Fabian}, title = {Smooth components on special iterated {Hilbert} schemes}, journal = {Comptes Rendus. Math\'ematique}, pages = {425--429}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.307}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.307/} }
TY - JOUR AU - Reede, Fabian TI - Smooth components on special iterated Hilbert schemes JO - Comptes Rendus. Mathématique PY - 2022 SP - 425 EP - 429 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.307/ DO - 10.5802/crmath.307 LA - en ID - CRMATH_2022__360_G5_425_0 ER -
Reede, Fabian. Smooth components on special iterated Hilbert schemes. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 425-429. doi : 10.5802/crmath.307. http://www.numdam.org/articles/10.5802/crmath.307/
[1] Some new surfaces with , The Fano Conference. Papers of the conference organized to commemorate the 50th anniversary of the death of Gino Fano (1871–1952), Univ. Torino, Turin (2004), pp. 123-142 | Zbl
[2] Surfaces of general type with geometric genus zero: a survey, Complex and differential geometry. Conference held at Leibniz Universität Hannover, Germany, September 14–18, 2009 (Springer Monographs in Mathematics), Volume 8, Springer (2011), pp. 1-48 | MR | Zbl
[3] Hilbert squares: derived categories and deformations, Sel. Math., New Ser., Volume 25 (2019) no. 3, 37, 32 pages | MR | Zbl
[4] Derived categories of (nested) Hilbert schemes (2019) (https://arxiv.org/abs/1909.04321, to appear in Michigan Mathematical Journal)
[5] Admissible subcategories in derived categories of moduli of vector bundles on curves, Adv. Math., Volume 351 (2019), pp. 653-675 | DOI | MR | Zbl
[6] -Very-ample line bundles and embeddings of Hilbert schemes of -cycles, Manuscr. Math., Volume 68 (1990) no. 3, pp. 337-341 | DOI | MR | Zbl
[7] Algebraic surfaces with , Algebraic surfaces (C.I.M.E. Summer School), Volume 76, Springer, 2011, pp. 97-215 | DOI
[8] Algebraic families on an algebraic surface. II. The Picard scheme of the punctual Hilbert scheme, Am. J. Math., Volume 95 (1973), pp. 660-687 | DOI | MR | Zbl
[9] Derived categories of curves as components of Fano manifolds, J. Lond. Math. Soc., Volume 97 (2018) no. 1, pp. 24-46 | DOI | MR | Zbl
[10] Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, Clarendon Press; Oxford University Press, 2006 | Zbl
[11] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010 | DOI | Zbl
[12] On the derived category of the Hilbert scheme of points on an Enriques surface, Sel. Math., New Ser., Volume 21 (2015) no. 4, pp. 1339-1360 | DOI | MR | Zbl
[13] Some ways to reconstruct a sheaf from its tautological image on a Hilbert scheme of points (2018) (https://arxiv.org/abs/1808.05931v1, to appear in Mathematische Nachrichten)
[14] Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Jpn. J. Math., Volume 13 (2018) no. 1, pp. 109-185 | DOI | MR | Zbl
[15] On Poincaré bundles of vector bundles on curves, Manuscr. Math., Volume 117 (2005) no. 2, pp. 173-181 | DOI | Zbl
[16] Positivity of the Poincaré bundle on the moduli space of vector bundles and its applications (2021) (https://arxiv.org/abs/2106.04857)
[17] Further pathologies in algebraic geometry, Am. J. Math., Volume 84 (1962), pp. 642-648 | DOI | MR | Zbl
[18] Derived categories of moduli spaces of vector bundles on curves, J. Geom. Phys., Volume 122 (2017), pp. 53-58 | DOI | MR | Zbl
[19] Derived categories of moduli spaces of vector bundles on curves. II, Geometry, algebra, number theory, and their information technology applications (Springer Monographs in Mathematics), Volume 251, Springer, 2018, pp. 375-382 | DOI | MR | Zbl
[20] Examples of smooth components of moduli spaces of stable sheaves, Manuscr. Math., Volume 165 (2021) no. 3-4, pp. 605-621 | DOI | MR | Zbl
Cité par Sources :