Let be a general ring. Duality pairs of -modules were introduced by Holm-Jørgensen. Most examples satisfy further properties making them what we call semi-complete duality pairs in this paper. We attach a relative theory of Gorenstein homological algebra to any given semi-complete duality pair . This generalizes the homological theory of the AC-Gorenstein modules defined by Bravo–Gillespie–Hovey, and we apply this to other semi-complete duality pairs. The main application is that the Ding injective modules are the right side of a complete (perfect) cotorsion pair, over any ring. Completeness of the Gorenstein flat cotorsion pair over any ring arises from the same duality pair.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G4_381_0, author = {Gillespie, James and Iacob, Alina}, title = {Duality pairs, generalized {Gorenstein} modules, and {Ding} injective envelopes}, journal = {Comptes Rendus. Math\'ematique}, pages = {381--398}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G4}, year = {2022}, doi = {10.5802/crmath.306}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.306/} }
TY - JOUR AU - Gillespie, James AU - Iacob, Alina TI - Duality pairs, generalized Gorenstein modules, and Ding injective envelopes JO - Comptes Rendus. Mathématique PY - 2022 SP - 381 EP - 398 VL - 360 IS - G4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.306/ DO - 10.5802/crmath.306 LA - en ID - CRMATH_2022__360_G4_381_0 ER -
%0 Journal Article %A Gillespie, James %A Iacob, Alina %T Duality pairs, generalized Gorenstein modules, and Ding injective envelopes %J Comptes Rendus. Mathématique %D 2022 %P 381-398 %V 360 %N G4 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.306/ %R 10.5802/crmath.306 %G en %F CRMATH_2022__360_G4_381_0
Gillespie, James; Iacob, Alina. Duality pairs, generalized Gorenstein modules, and Ding injective envelopes. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 381-398. doi : 10.5802/crmath.306. http://www.numdam.org/articles/10.5802/crmath.306/
[1] The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)
[2] Locally type and -coherent categories (2019) (https://arxiv.org/abs/1908.10987)
[3] Finiteness conditions and cotorsion pairs, J. Pure Appl. Algebra, Volume 221 (2017) no. 6, pp. 1249-1267 | DOI | MR | Zbl
[4] Module classes induced by complexes and -pure-injective modules (2021) (https://arxiv.org/abs/2104.08602)
[5] Closure under Transfinite Extensions, Ill. J. Math., Volume 51 (2007) no. 2, pp. 561-569 | MR | Zbl
[6] Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, 2000 | DOI | Zbl
[7] The projective stable category of a coherent scheme, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019) no. 1, pp. 15-43 | DOI | MR | Zbl
[8] Model structures and relative Gorenstein flat modules and chain complexes, Categorical, homological and combinatorial methods in algebra (Contemporary Mathematics), Volume 751, American Mathematical Society, 2020, pp. 135-175 | DOI | MR | Zbl
[9] Covers and envelopes in the category of complexes of modules, CRC Research Notes in Mathematics, 407, Chapman & Hall/CRC, 1999
[10] Model structures on modules over Ding-Chen rings, Homology Homotopy Appl., Volume 12 (2010) no. 1, pp. 61-73 | DOI | MR | Zbl
[11] How to construct a Hovey triple from two cotorsion pairs, Fundam. Math., Volume 230 (2015) no. 3, pp. 281-289 | DOI | MR | Zbl
[12] Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl
[13] Hereditary abelian model categories, Bull. Lond. Math. Soc., Volume 48 (2016) no. 6, pp. 895-922 | DOI | MR | Zbl
[14] Models for homotopy categories of injectives and Gorenstein injectives, Commun. Algebra, Volume 45 (2017) no. 6, pp. 2520-2545 | DOI | MR | Zbl
[15] On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | MR | Zbl
[16] Gorenstein AC-projective complexes, J. Homotopy Relat. Struct., Volume 13 (2018) no. 4, pp. 769-791 | DOI | MR | Zbl
[17] Duality pairs and stable module categories, J. Pure Appl. Algebra, Volume 223 (2019) no. 8, pp. 3425-3435 | DOI | MR | Zbl
[18] Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2006 | DOI
[19] Gorenstein homological dimensions, J. Pure Appl. Algebra, Volume 189 (2004), pp. 167-193 | DOI | MR | Zbl
[20] Cotorsion pairs induced by duality pairs, J. Commut. Algebra, Volume 1 (2009) no. 4, pp. 621-633 | MR | Zbl
[21] Cotorsion pairs, model category structures, and representation theory, Math. Z., Volume 241 (2002), pp. 553-592 | DOI | MR | Zbl
[22] Generalized Gorenstein modules (to appear in Algebra Colloq.)
[23] Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl., Volume 7 (2008) no. 4, pp. 491-506 | MR | Zbl
[24] Triangulated categories, Annals of Mathematics Studies, 148, Princeton University Press, 2001 | DOI
[25] The homotopy category of flat modules, and Grothendieck duality, Invent. Math., Volume 174 (2008) no. 2, pp. 255-308 | DOI | MR | Zbl
[26] Purity, spectra and localisation, Encyclopedia of Mathematics and Its Applications, 121, Cambridge University Press, 2009 | DOI
[27] Generalized Brown representability in homotopy categories, Theory Appl. Categ., Volume 14 (2005) no. 19, pp. 451-479 | MR | Zbl
[28] Singular compactness and definability for -cotorsion and Gorenstein modules, Sel. Math., New Ser., Volume 26 (2020) no. 2, 23, 40 pages | MR | Zbl
[29] Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math., Volume 25 (2013) no. 1, pp. 193-219 | MR | Zbl
[30] On purity and applications to coderived and singularity categories (2014) (https://arxiv.org/abs/1412.1615)
[31] Ding projective and Ding injective modules, Algebra Colloq., Volume 20 (2013) no. 4, pp. 601-612 | DOI | MR | Zbl
Cité par Sources :