The strength of a homogeneous polynomial (or form) is the smallest length of an additive decomposition expressing it whose summands are reducible forms. Using polynomial functors, we show that the set of forms with bounded strength is not always Zariski-closed. More specifically, if the ground field is algebraically closed, we prove that the set of quartics with strength is not Zariski-closed for a large number of variables.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G4_371_0, author = {Ballico, Edoardo and Bik, Arthur and Oneto, Alessandro and Ventura, Emanuele}, title = {The set of forms with bounded strength is not closed}, journal = {Comptes Rendus. Math\'ematique}, pages = {371--380}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G4}, year = {2022}, doi = {10.5802/crmath.302}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.302/} }
TY - JOUR AU - Ballico, Edoardo AU - Bik, Arthur AU - Oneto, Alessandro AU - Ventura, Emanuele TI - The set of forms with bounded strength is not closed JO - Comptes Rendus. Mathématique PY - 2022 SP - 371 EP - 380 VL - 360 IS - G4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.302/ DO - 10.5802/crmath.302 LA - en ID - CRMATH_2022__360_G4_371_0 ER -
%0 Journal Article %A Ballico, Edoardo %A Bik, Arthur %A Oneto, Alessandro %A Ventura, Emanuele %T The set of forms with bounded strength is not closed %J Comptes Rendus. Mathématique %D 2022 %P 371-380 %V 360 %N G4 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.302/ %R 10.5802/crmath.302 %G en %F CRMATH_2022__360_G4_371_0
Ballico, Edoardo; Bik, Arthur; Oneto, Alessandro; Ventura, Emanuele. The set of forms with bounded strength is not closed. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 371-380. doi : 10.5802/crmath.302. http://www.numdam.org/articles/10.5802/crmath.302/
[1] Small subalgebras of polynomial rings and Stillman’s conjecture, J. Am. Math. Soc., Volume 33 (2020) no. 1, pp. 291-309 | DOI | MR | Zbl
[2] Strength conditions, small subalgebras, and Stillman bounds in degree , Trans. Am. Math. Soc. (2020) no. 373, pp. 4757-4806 | DOI | MR | Zbl
[3] Strength and slice rank of forms are generically equal (2021) (https://arxiv.org/abs/2102.11549, to appear in Isr. J. Math.)
[4] The strength for line bundles, Math. Scand., Volume 127 (2021) no. 3, pp. 405-440
[5] Strength and Noetherianity for infinite Tensors, Ph. D. Thesis, Universität Bern (2020) https://biblio.unibe.ch/download/eldiss/20bik_ma.pdf
[6] Polynomials and tensors of bounded strength, Commun. Contemp. Math., Volume 21 (2019) no. 07, 1850062, 24 pages | MR | Zbl
[7] The geometry of polynomial representations (2021) (https://arxiv.org/abs/2105.12621)
[8] On the strength of general polynomials (2021) (https://doi.org/10.1080/03081087.2021.1947955, to appear in Linear Multilinear Algebra) | DOI
[9] Topological Noetherianity for cubic polynomials, Algebra Number Theory, Volume 11 (2017) no. 9, pp. 2197-2212 | DOI | MR | Zbl
[10] Topological Noetherianity of polynomial functors, J. Am. Math. Soc., Volume 32 (2019) no. 3, pp. 691-707 | DOI | MR | Zbl
[11] Big polynomial rings and Stillman’s conjecture, Invent. Math., Volume 218 (2019) no. 2, pp. 413-439 | DOI | MR | Zbl
[12] Big Polynomial Rings with Imperfect Coefficient Fields, Mich. Math. J., Volume 70 (2021) no. 3, pp. 649-672 | MR | Zbl
[13] Algebraic geometry: A first course, Graduate Texts in Mathematics, 133, Springer, 1992 | DOI | Zbl
[14] Linear subspaces of minimal codimension in hypersurfaces (2021) (https://arxiv.org/abs/2107.08080)
[15] Schmidt rank and singularities (2021) (https://arxiv.org/abs/2104.10198)
[16] Schmidt rank of quartics over perfect fields (2021) (https://arxiv.org/abs/2110.10244)
[17] On ranks of polynomials, Algebr. Represent. Theory, Volume 21 (2018) no. 5, pp. 1017-1021 | DOI | MR | Zbl
[18] Hilbert’s Nullstellensatz in infinite-dimensional space, Proc. Am. Math. Soc., Volume 3 (1952), pp. 407-410 | MR | Zbl
[19] The density of integer points on homogeneous varieties, Acta Math., Volume 154 (1985) no. 3-4, pp. 243-296 | DOI | MR | Zbl
Cité par Sources :