A result of Gluck is that any finite group
Accepté le :
Publié le :
DOI : 10.5802/crmath.301
@article{CRMATH_2022__360_G6_583_0, author = {Yang, Yong}, title = {On the number of prime divisors of character degrees and conjugacy classes of a finite group}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--588}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.301}, zbl = {07547260}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.301/} }
TY - JOUR AU - Yang, Yong TI - On the number of prime divisors of character degrees and conjugacy classes of a finite group JO - Comptes Rendus. Mathématique PY - 2022 SP - 583 EP - 588 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.301/ DO - 10.5802/crmath.301 LA - en ID - CRMATH_2022__360_G6_583_0 ER -
%0 Journal Article %A Yang, Yong %T On the number of prime divisors of character degrees and conjugacy classes of a finite group %J Comptes Rendus. Mathématique %D 2022 %P 583-588 %V 360 %N G6 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.301/ %R 10.5802/crmath.301 %G en %F CRMATH_2022__360_G6_583_0
Yang, Yong. On the number of prime divisors of character degrees and conjugacy classes of a finite group. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 583-588. doi : 10.5802/crmath.301. https://www.numdam.org/articles/10.5802/crmath.301/
[1] Conjugacy classes of small sizes in the linear and unitary groups, J. Group Theory, Volume 16 (2013) no. 6, pp. 851-874 | DOI | MR | Zbl
[2] Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, 1985 (with comput. assist. from J. G. Thackray) | Zbl
[3] Group Representation Theory (in 2 parts). Part A: Ordinary representation theory, Pure and Applied Mathematics, 7, Marcel Dekker, 1971 | MR | Zbl
[4] A character theoretic condition for
[5]
[6] The largest irreducible character degree of a finite group, Can. J. Math., Volume 37 (1985), pp. 442-451 | DOI | MR | Zbl
[7] Data for Finite Groups of Lie Type and Related Algebraic Groups (http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html)
[8] A variation on theorems of Jordan and Gluck, J. Algebra, Volume 301 (2006) no. 1, pp. 274-279 | DOI | MR | Zbl
[9] Low-dimensional complex characters of the symplectic and orthogonal groups, Commun. Algebra, Volume 38 (2010) no. 3, pp. 1157-1197 | DOI | MR | Zbl
[10] Unipotent elements of finite groups of Lie type and realization fields of their complex representations, J. Algebra, Volume 271 (2004) no. 1, pp. 327- 390 | DOI | MR | Zbl
[11] Orbits of the actions of finite solvable groups, J. Algebra, Volume 321 (2009) no. 7, pp. 2012-2021 | DOI | MR | Zbl
[12] A variation on a theorem of Gluck, Monatsh. Math., Volume 185 (2018) no. 1, pp. 159-162 | DOI | MR | Zbl
Cité par Sources :