Géometrie algébrique
Note on the monodromy conjecture for a space monomial curve with a plane semigroup
[Note sur la conjecture de la monodromie pour une courbe d’espace monomiale dont le semi-groupe est celui d’une branche plane]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 177-187.

En gros, la conjecture de la monodromie pour une singularité dit que chaque pôle de sa fonction zêta d’Igusa motivique induit une valeur propre de sa monodromie. Dans cette note, nous déterminons la fonction zêta d’Igusa motivique ainsi que les valeurs propres de la monodromie pour une courbe d’espace monomiale qui apparaît comme fibre spéciale d’une famille équisingulière dont la fibre générique est une branche plane. En particulier, il en résulte une démonstration de la conjecture de la monodromie pour une telle courbe.

Roughly speaking, the monodromy conjecture for a singularity states that every pole of its motivic Igusa zeta function induces an eigenvalue of its monodromy. In this note, we determine both the motivic Igusa zeta function and the eigenvalues of monodromy for a space monomial curve that appears as the special fiber of an equisingular family whose generic fiber is a plane branch. In particular, this yields a proof of the monodromy conjecture for such a curve.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.30
Classification : 14E15, 14E18, 14H20, 14J17, 32S40
Martín-Morales, Jorge 1 ; Mourtada, Hussein 2 ; Veys, Willem 3 ; Vos, Lena 4

1 Centro Universitario de la Defensa, IUMA, Academia General Militar, Ctra. de Huesca s/n., 50090 Zaragoza, Spain
2 Université Paris Diderot, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Batiment Sophie Germain, case 7012, 75205 Paris Cedex 13, France
3 KU Leuven, Departement Wiskunde, Celestijnenlaan 200B, bus 2400, 3001 Leuven, Belgium
4 KU Leuven, Departement wiskunde, Celestijnenlaan 200B, bus 2400, 3001 Leuven, Belgium
@article{CRMATH_2020__358_2_177_0,
     author = {Mart{\'\i}n-Morales, Jorge and Mourtada, Hussein and Veys, Willem and Vos, Lena},
     title = {Note on the monodromy conjecture for a space monomial curve with a plane semigroup},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {177--187},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.30},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.30/}
}
TY  - JOUR
AU  - Martín-Morales, Jorge
AU  - Mourtada, Hussein
AU  - Veys, Willem
AU  - Vos, Lena
TI  - Note on the monodromy conjecture for a space monomial curve with a plane semigroup
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 177
EP  - 187
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.30/
DO  - 10.5802/crmath.30
LA  - en
ID  - CRMATH_2020__358_2_177_0
ER  - 
%0 Journal Article
%A Martín-Morales, Jorge
%A Mourtada, Hussein
%A Veys, Willem
%A Vos, Lena
%T Note on the monodromy conjecture for a space monomial curve with a plane semigroup
%J Comptes Rendus. Mathématique
%D 2020
%P 177-187
%V 358
%N 2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.30/
%R 10.5802/crmath.30
%G en
%F CRMATH_2020__358_2_177_0
Martín-Morales, Jorge; Mourtada, Hussein; Veys, Willem; Vos, Lena. Note on the monodromy conjecture for a space monomial curve with a plane semigroup. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 177-187. doi : 10.5802/crmath.30. http://www.numdam.org/articles/10.5802/crmath.30/

[1] A’Campo, Norbert La fonction zêta d’une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248 | Zbl

[2] Bories, Bart; Veys, Willem Igusa’s p-adic local zeta function and the monodromy conjecture for non-degenerate surface singularities, Mem. Am. Math. Soc., Volume 242 (2016) no. 1145, p. vii+131 | DOI | MR | Zbl

[3] Denef, Jan; Loeser, François Motivic Igusa zeta functions, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl

[4] Howald, Jason; Mustaţă, Mircea; Yuen, Cornelia On Igusa zeta functions of monomial ideals, Proc. Am. Math. Soc., Volume 135 (2007) no. 11, pp. 3425-3433 | DOI | MR | Zbl

[5] Martín-Morales, Jorge Monodromy zeta function formula for embedded Q-resolutions, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 939-967 | DOI | MR | Zbl

[6] Martín-Morales, Jorge; Veys, Willem; Vos, Lena The monodromy conjecture for a space monomial curve with a plane semigroup (2019) (https://arxiv.org/abs/1912.06005)

[7] Milnor, John Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press; University of Tokyo Press, 1968, iii+122 pages | MR | Zbl

[8] Mourtada, Hussein Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2313-2336 | DOI | Numdam | MR | Zbl

[9] Mourtada, Hussein Jet schemes and generating sequences of divisorial valuations in dimension two, Mich. Math. J., Volume 66 (2017) no. 1, pp. 155-174 | DOI | MR | Zbl

[10] Mourtada, Hussein; Veys, Willem; Vos, Lena The motivic Igusa zeta function of a space monomial curve with a plane semigroup (2019) (https://arxiv.org/abs/1903.02354)

[11] Spivakovsky, Mark Valuations in function fields of surfaces, Am. J. Math., Volume 112 (1990) no. 1, pp. 107-156 | DOI | MR | Zbl

[12] Teissier, Bernard Appendix, The moduli problem for plane branches (University Lecture Series), Volume 39, American Mathematical Society, 2006, pp. 120-159 | DOI

[13] Van Proeyen, Lise; Veys, Willem The monodromy conjecture for zeta functions associated to ideals in dimension two, Ann. Inst. Fourier, Volume 60 (2010) no. 4, pp. 1347-1362 | DOI | Numdam | MR | Zbl

[14] Verdier, Jean-Louis Spécialisation de faisceaux et monodromie modérée, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101, Société Mathématique de France, 1983, pp. 332-364 | Numdam | Zbl

[15] Zariski, Oscar The moduli problem for plane branches, University Lecture Series, 39, American Mathematical Society, 2006, viii+151 pages | DOI | MR | Zbl

Cité par Sources :