Nous généralisons l’analogue du premier critère de Buchberger, dû à Boulier et al., pour détecter les réductions inutiles de S-polynômes, lors des calculs d’ensembles caractéristiques d’idéaux différentiels. La version primitive suppose des polynômes linéaires ; le résultat est ici étendu à un produit de polynômes différentiels linéaires, appliqués à un même polynôme différentiel, arbitraire.
We generalize the analog of Buchberger’s first criterion, stated by Boulier et al., for detecting useless S-polynomials reductions in the computation of characteristic sets of differential ideals. The original version assumes linear polynomials; this result is here extended to a product of linear differential polynomials depending on the same arbitrary differential polynomial.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G3_255_0, author = {Hashemi, Amir and Ollivier, Fran\c{c}ois}, title = {Une g\'en\'eralisation du crit\`ere de {Boulier{\textendash}Buchberger} pour le calcul des ensembles caract\'eristiques d{\textquoteright}id\'eaux diff\'erentiels}, journal = {Comptes Rendus. Math\'ematique}, pages = {255--264}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G3}, year = {2022}, doi = {10.5802/crmath.295}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/crmath.295/} }
TY - JOUR AU - Hashemi, Amir AU - Ollivier, François TI - Une généralisation du critère de Boulier–Buchberger pour le calcul des ensembles caractéristiques d’idéaux différentiels JO - Comptes Rendus. Mathématique PY - 2022 SP - 255 EP - 264 VL - 360 IS - G3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.295/ DO - 10.5802/crmath.295 LA - fr ID - CRMATH_2022__360_G3_255_0 ER -
%0 Journal Article %A Hashemi, Amir %A Ollivier, François %T Une généralisation du critère de Boulier–Buchberger pour le calcul des ensembles caractéristiques d’idéaux différentiels %J Comptes Rendus. Mathématique %D 2022 %P 255-264 %V 360 %N G3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.295/ %R 10.5802/crmath.295 %G fr %F CRMATH_2022__360_G3_255_0
Hashemi, Amir; Ollivier, François. Une généralisation du critère de Boulier–Buchberger pour le calcul des ensembles caractéristiques d’idéaux différentiels. Comptes Rendus. Mathématique, Tome 360 (2022) no. G3, pp. 255-264. doi : 10.5802/crmath.295. http://www.numdam.org/articles/10.5802/crmath.295/
[1] Fast computation of power series solutions of systems of differential equations, Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA 2007, New Orleans, LA, USA, January 7–9, 2007, Association for Computing Machinery ; Society for Industrial and Applied Mathematics (2007), pp. 1012-1021 | Zbl
[2] Computing representations for radicals of finitely generated differential ideals, Appl. Algebra Eng. Commun. Comput., Volume 20 (2009) no. 1, pp. 73-121 | DOI | MR | Zbl
[3] A criterion for detecting unnecessary reductions in the construction of Gröbner-bases, Symbolic and Algebraic Computation. EUROSAM 1979 (Ng, E. W., ed.) (Lecture Notes in Computer Science), Volume 72, Springer, 1979, pp. 3-21 | DOI | Zbl
[4] Gröbner bases and differential algebra, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Menorca, 1987 (Huguet, L.; Poli, A., eds.) (Lecture Notes in Computer Science), Volume 356, Springer, 1987, pp. 129-140 | Zbl
[5] Primary Ideals and Their Differential Equations, Found. Comput. Math., Volume 21 (2021) no. 5, pp. 1363-1399 | DOI | MR | Zbl
[6] A geometric index reduction method for implicit systems of differential algebraic equations, J. Symb. Comput., Volume 46 (2011) no. 10, pp. 1114-1138 | DOI | MR | Zbl
[7] A Gröbner free alternative for polynomial system solving, J. Complexity, Volume 17 (2001) no. 1, pp. 154-211 | DOI | Zbl
[8] An Improvement of Rosenfeld–Gröbner Algorithm, Mathematical Software – ICMS 2014 (Yong, Hoon; Yap, C., eds.) (Lect. Notes in Comp. Sci.), Volume 8592, Springer, 2014, pp. 466-471 | DOI | Zbl
[9] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | Zbl
[10] Standard bases of differential ideals, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Sakata, S., ed.) (Lect. Notes in Comp. Sci.), Volume 508, Springer, 1990, pp. 304-321 | DOI | Zbl
Cité par Sources :