In this short note, we prove that for every bounded, planar and convex set , one has
where , , and are the first Dirichlet eigenvalue, the torsion, the inradius and the volume. The inequality is sharp as the equality asymptotically holds for any family of thin collapsing rectangles.
As a byproduct, we obtain the following bound for planar convex sets
which improves Polyá’s inequality and is slightly better than the one provided in [3].
The novel ingredient of the proof is the sharp inequality
recently proved in [8].
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G3_241_0, author = {Ftouhi, Ilias}, title = {On a {P\'olya{\textquoteright}s} inequality for planar convex sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--246}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G3}, year = {2022}, doi = {10.5802/crmath.292}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.292/} }
TY - JOUR AU - Ftouhi, Ilias TI - On a Pólya’s inequality for planar convex sets JO - Comptes Rendus. Mathématique PY - 2022 SP - 241 EP - 246 VL - 360 IS - G3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.292/ DO - 10.5802/crmath.292 LA - en ID - CRMATH_2022__360_G3_241_0 ER -
Ftouhi, Ilias. On a Pólya’s inequality for planar convex sets. Comptes Rendus. Mathématique, Tome 360 (2022) no. G3, pp. 241-246. doi : 10.5802/crmath.292. http://www.numdam.org/articles/10.5802/crmath.292/
[1] On relations between principal eigenvalue and torsional rigidity, Commun. Contemp. Math., Volume 23 (2021) no. 08, 2050093 | DOI | MR | Zbl
[2] Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity, New trends in shape optimization (ISNM. International Series of Numerical Mathematics), Volume 166, Birkhäuser/Springer, 2015, pp. 19-41 | DOI | MR | Zbl
[3] On Pólya’s inequality for torsional rigidity and first Dirichlet eigenvalue, Integral Equations Oper. Theory, Volume 86 (2016) no. 4, pp. 579-600 | DOI | MR | Zbl
[4] On a Pólya functional for rhombi, isosceles triangles, and thinning convex sets, Rev. Mat. Iberoam., Volume 36 (2020) no. 7, pp. 2091-2105 | DOI | MR | Zbl
[5] Theorie der konvexen Körper, Springer, 1974, vii+164+3 pages (Berichtigter Reprint) | MR
[6] On principal frequencies, volume and inradius in convex sets, NoDEA, Nonlinear Differ. Equ. Appl., Volume 27 (2020) no. 2, 12, 26 pages | DOI | MR | Zbl
[7] An application of the continuous Steiner symmetrization to Blaschke–Santaló diagrams, ESAIM, Control Optim. Calc. Var., Volume 27 (2021), 36, 13 pages | DOI | MR | Zbl
[8] On the Cheeger inequality for convex sets, J. Math. Anal. Appl., Volume 504 (2021) no. 2, p. 125443 | DOI | MR | Zbl
[9] Characterization of Cheeger sets for convex subsets of the plane, Pac. J. Math., Volume 225 (2006) no. 1, pp. 103-118 | DOI | MR | Zbl
[10] On Blaschke–Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue, Ann. Mat. Pura Appl., Volume 201 (2022), pp. 175-201 | DOI | Zbl
[11] On the principal frequency of a membrane and the torsional rigidity of a beam, Studies in mathematical analysis and related topics, Stanford University Press, 1962, pp. 227-231 | MR
[12] Reverse Cheeger inequality for planar convex sets, J. Convex Anal., Volume 24 (2017) no. 1, pp. 107-122 | MR | Zbl
[13] Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, 27, Princeton University Press, 1951, xvi+279 pages | MR
[14] Generating Random Convex Polygons, http://cglab.ca/~sander/misc/ConvexGeneration/convex.html
Cité par Sources :