We introduce a tiling problem between bounded open convex polyforms with colored directed edges. If there exists a tiling of the polyform by , we construct a monomorphism from the sandpile group on to the one on . We provide several examples of infinite series of such tilings converging to , and thus define the limit of the sandpile group on the plane.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G4_333_0, author = {Lang, Moritz and Shkolnikov, Mikhail}, title = {Sandpile monomorphisms and limits}, journal = {Comptes Rendus. Math\'ematique}, pages = {333--341}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G4}, year = {2022}, doi = {10.5802/crmath.291}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.291/} }
TY - JOUR AU - Lang, Moritz AU - Shkolnikov, Mikhail TI - Sandpile monomorphisms and limits JO - Comptes Rendus. Mathématique PY - 2022 SP - 333 EP - 341 VL - 360 IS - G4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.291/ DO - 10.5802/crmath.291 LA - en ID - CRMATH_2022__360_G4_333_0 ER -
%0 Journal Article %A Lang, Moritz %A Shkolnikov, Mikhail %T Sandpile monomorphisms and limits %J Comptes Rendus. Mathématique %D 2022 %P 333-341 %V 360 %N G4 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.291/ %R 10.5802/crmath.291 %G en %F CRMATH_2022__360_G4_333_0
Lang, Moritz; Shkolnikov, Mikhail. Sandpile monomorphisms and limits. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 333-341. doi : 10.5802/crmath.291. http://www.numdam.org/articles/10.5802/crmath.291/
[1] Infinite volume limit for the stationary distribution of Abelian sandpile models, Commun. Math. Phys., Volume 249 (2004) no. 1, pp. 197-213 | DOI | MR | Zbl
[2] The lattice of integral flows and the lattice of integral cuts on a finite graph, Bull. Soc. Math. Fr., Volume 125 (1997) no. 2, pp. 167-198 | DOI | Numdam | MR | Zbl
[3] Self-organized criticality: an explanation of the 1/f noise, Phys. Rev. Lett., Volume 59 (1987) no. 4, p. 381
[4] Riemann–Roch and Abel–Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | DOI | MR | Zbl
[5] Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not., Volume 2009 (2009) no. 15, pp. 2914-2955 | MR | Zbl
[6] Algebraic potential theory on graphs, Bull. Lond. Math. Soc., Volume 29 (1997) no. 6, pp. 641-682 | DOI | MR | Zbl
[7] Abelian sandpiles, Comput. Phys., Volume 5 (1991) no. 2, pp. 198-203 | DOI
[8] Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., Volume 64 (1990) no. 14, p. 1613 | DOI | MR | Zbl
[9] Algebraic aspects of abelian sandpile models, J. Phys. A, Math. Gen., Volume 28 (1995) no. 4, p. 805 | DOI | MR
[10] Sandpiles and Dominos, Electron. J. Comb., Volume 22 (2015) no. 1, pp. 1-66 | MR | Zbl
[11] Approaching criticality via the zero dissipation limit in the abelian avalanche model, J. Stat. Phys., Volume 159 (2015) no. 6, pp. 1369-1407 | DOI | MR | Zbl
[12] Self-organized criticality and pattern emergence through the lens of tropical geometry, Proc. Natl. Acad. Sci., Volume 115 (2018) no. 35, p. E8135-E8142 | MR | Zbl
[13] Tropical curves in sandpiles, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 2, pp. 125-130 | DOI | MR | Zbl
[14] Harmonic dynamics of the abelian sandpile, Proc. Natl. Acad. Sci., Volume 116 (2019) no. 8, pp. 2821-2830 | DOI | MR | Zbl
[15] Random walk and the heat equation, 55, American Mathematical Society, 2010
[16] Abelian sandpiles and the harmonic model, Commun. Math. Phys., Volume 292 (2009) no. 3, p. 721 | DOI | MR | Zbl
Cité par Sources :