Dans cette note, nous étudions la
In this note we study the
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G4_343_0, author = {Chatzakou, Marianna and Kumar, Vishvesh}, title = {$L^p$-$L^q$ {Boundedness} of {Spectral} {Multipliers} of the {Anharmonic} {Oscillator}}, journal = {Comptes Rendus. Math\'ematique}, pages = {343--347}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G4}, year = {2022}, doi = {10.5802/crmath.290}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.290/} }
TY - JOUR AU - Chatzakou, Marianna AU - Kumar, Vishvesh TI - $L^p$-$L^q$ Boundedness of Spectral Multipliers of the Anharmonic Oscillator JO - Comptes Rendus. Mathématique PY - 2022 SP - 343 EP - 347 VL - 360 IS - G4 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.290/ DO - 10.5802/crmath.290 LA - en ID - CRMATH_2022__360_G4_343_0 ER -
%0 Journal Article %A Chatzakou, Marianna %A Kumar, Vishvesh %T $L^p$-$L^q$ Boundedness of Spectral Multipliers of the Anharmonic Oscillator %J Comptes Rendus. Mathématique %D 2022 %P 343-347 %V 360 %N G4 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.290/ %R 10.5802/crmath.290 %G en %F CRMATH_2022__360_G4_343_0
Chatzakou, Marianna; Kumar, Vishvesh. $L^p$-$L^q$ Boundedness of Spectral Multipliers of the Anharmonic Oscillator. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 343-347. doi : 10.5802/crmath.290. https://www.numdam.org/articles/10.5802/crmath.290/
[1] Hardy–Littlewood–Paley inequalities and Fourier multipliers on
[2] Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and
[3]
[4]
[5]
[6] On a class of anharmonic oscillators (2020) (https://arxiv.org/abs/1811.12566v3, to appear in Journal de Mathématiques Pures et Appliquées)
[7]
[8]
[9] Comportement asymptotique précise du spectre d’opérateurs globalement elliptiques dans
[10] Estimates for translation invariant operators in
[11] On multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, Volume 109 (1956), pp. 73-84 | MR | Zbl
[12] Nonharmonic analysis of boundary value problems, Int. Math. Res. Not., Volume 12 (2016), pp. 3548-3615 | DOI | Zbl
[13]
Cité par Sources :