Ginzburg, Guay, Opdam and Rouquier established an equivalence of categories between a quotient category of the category for the rational Cherednik algebra and the category of finite dimension modules of the Hecke algebra of a complex reflection group . We announce a generalization of this result to the extension of the Hecke algebra associated to the normalizer of a reflection subgroup.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G1_47_0, author = {Fallet, Henry}, title = {Cherednik algebra for the normalizer}, journal = {Comptes Rendus. Math\'ematique}, pages = {47--52}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G1}, year = {2022}, doi = {10.5802/crmath.281}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.281/} }
TY - JOUR AU - Fallet, Henry TI - Cherednik algebra for the normalizer JO - Comptes Rendus. Mathématique PY - 2022 SP - 47 EP - 52 VL - 360 IS - G1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.281/ DO - 10.5802/crmath.281 LA - en ID - CRMATH_2022__360_G1_47_0 ER -
Fallet, Henry. Cherednik algebra for the normalizer. Comptes Rendus. Mathématique, Tome 360 (2022) no. G1, pp. 47-52. doi : 10.5802/crmath.281. http://www.numdam.org/articles/10.5802/crmath.281/
[1] Highest weight theory for finite-dimensional graded algebras with triangular decomposition, Adv. Math., Volume 330 (2018), pp. 361-419 | DOI | MR | Zbl
[2] Cherednik algebras and Calogero-Moser cells (2017) (https://arxiv.org/abs/1708.09764)
[3] Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math., Volume 1998 (1998) no. 500, pp. 127-190 | MR | Zbl
[4] Differential operators on varieties with a quotient subvariety, J. Algebra, Volume 170 (1994) no. 3, pp. 735-753 | DOI | MR | Zbl
[5] Proof of the Broué–Malle–Rouquier conjecture in characteristic zero (after I. Losev and I. Marin-G. Pfeiffer), Arnold Math. J., Volume 3 (2017) no. 3, pp. 445-449 | DOI | Zbl
[6] Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl
[7] Opérateurs de Dunkl–Opdam, Catégorie , Algèbres de Cherednik (PhD thesis in preparation at Université Picardie Jule-Verne)
[8] Lectures on D-modules (1998) (Online lecture notes, available at Sabin Cautis’ webpage http://www. math. columbia. edu/~ scautis/dmodules/dmodules/ginzburg.pdf, with collaboration of Baranovsky, V. and Evens S)
[9] On the category for rational Cherednik algebras, Invent. Math., Volume 154 (2003) no. 3, pp. 617-651 | DOI | MR | Zbl
[10] Braid groups of normalizers of reflection subgroups (2020) (https://arxiv.org/abs/2002.05468, to appear in Ann. Inst. Fourier)
[11] Hecke algebras of normalizers of parabolic subgroups (2020) (https://arxiv.org/abs/2006.09028)
[12] Eléments de topologie algébrique, Editions Hermann, 1971
[13] Brauer-type reciprocity for a class of graded associative algebras, J. Algebra, Volume 144 (1991) no. 1, pp. 117-126 | DOI | MR | Zbl
[14] Artin groups and Yokonuma–Hecke algebras, Int. Math. Res. Not., Volume 2018 (2018) no. 13, pp. 4022-4062 | MR | Zbl
[15] An introduction to homological algebra, Springer, 2008
Cité par Sources :