Équations aux dérivées partielles
Fast reaction limit and forward-backward diffusion: A Radon–Nikodym approach
Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 189-203.

We consider two singular limits: a fast reaction limit with a non-monotone nonlinearity and a regularization of the forward-backward diffusion equation. We derive pointwise identities satisfied by the Young measure generated by these problems. As a result, we obtain an explicit formula for the Young measure even without the non-degeneracy assumption used in the previous works. The main new idea is an application of the Radon–Nikodym theorem to decompose the Young measure.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.279
Classification : 35K57, 35B25, 35B36
Skrzeczkowski, Jakub 1

1 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
@article{CRMATH_2022__360_G2_189_0,
     author = {Skrzeczkowski, Jakub},
     title = {Fast reaction limit and forward-backward diffusion: {A} {Radon{\textendash}Nikodym} approach},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {189--203},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G2},
     year = {2022},
     doi = {10.5802/crmath.279},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.279/}
}
TY  - JOUR
AU  - Skrzeczkowski, Jakub
TI  - Fast reaction limit and forward-backward diffusion: A Radon–Nikodym approach
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 189
EP  - 203
VL  - 360
IS  - G2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.279/
DO  - 10.5802/crmath.279
LA  - en
ID  - CRMATH_2022__360_G2_189_0
ER  - 
%0 Journal Article
%A Skrzeczkowski, Jakub
%T Fast reaction limit and forward-backward diffusion: A Radon–Nikodym approach
%J Comptes Rendus. Mathématique
%D 2022
%P 189-203
%V 360
%N G2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.279/
%R 10.5802/crmath.279
%G en
%F CRMATH_2022__360_G2_189_0
Skrzeczkowski, Jakub. Fast reaction limit and forward-backward diffusion: A Radon–Nikodym approach. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 189-203. doi : 10.5802/crmath.279. http://www.numdam.org/articles/10.5802/crmath.279/

[1] Andrews, Graham; Ball, John MacLeod Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity, J. Differ. Equations, Volume 44 (1982) no. 2, pp. 306-341 (Special issue dedicated to J. P. LaSalle) | DOI | MR | Zbl

[2] Ball, John Macleod A version of the fundamental theorem for Young measures, PDEs and continuum models of phase transitions (Nice, 1988) (Rascle, Michel et al., eds.) (Lecture Notes in Physics), Volume 344, Springer, 1989, pp. 207-215 | DOI | MR | Zbl

[3] Bertsch, Michiel; Smarrazzo, Flavia; Tesei, Alberto Pseudoparabolic regularization of forward-backward parabolic equations: a logarithmic nonlinearity, Anal. PDE, Volume 6 (2013) no. 7, pp. 1719-1754 | DOI | MR | Zbl

[4] Bertsch, Michiel; Smarrazzo, Flavia; Tesei, Alberto Pseudo-parabolic regularization of forward-backward parabolic equations: power-type nonlinearities, J. Reine Angew. Math., Volume 712 (2016), pp. 51-80 | DOI | MR | Zbl

[5] Bothe, Dieter; Hilhorst, Danielle A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., Volume 286 (2003) no. 1, pp. 125-135 | DOI | MR | Zbl

[6] Bothe, Dieter; Pierre, Michel; Rolland, Guillaume Cross-diffusion limit for a reaction-diffusion system with fast reversible reaction, Commun. Partial Differ. Equations, Volume 37 (2012) no. 11, pp. 1940-1966 | DOI | MR | Zbl

[7] Bottazzi, Emanuele Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations, Adv. Math., Volume 345 (2019), pp. 429-482 | DOI | MR | Zbl

[8] Bottazzi, Emanuele A grid function formulation of a class of ill-posed parabolic equations, J. Differ. Equations, Volume 271 (2021), pp. 39-75 | DOI | MR | Zbl

[9] Bubba, Federica; Perthame, Benoît; Pouchol, Camille; Schmidtchen, Markus Hele–Shaw Limit for a System of Two Reaction-(Cross-)Diffusion Equations for Living Tissues, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 2, pp. 735-766 | DOI | MR | Zbl

[10] Carrillo, José A.; Filbet, Francis; Schmidtchen, Markus Convergence of a finite volume scheme for a system of interacting species with cross-diffusion, Numer. Math., Volume 145 (2020) no. 3, pp. 473-511 | DOI | MR | Zbl

[11] Crooks, Elaine C. M.; Hilhorst, Danielle Self-similar fast-reaction limits for reaction-diffusion systems on unbounded domains, J. Differ. Equations, Volume 261 (2016) no. 3, pp. 2210-2250 | DOI | MR | Zbl

[12] Cygan, Szymon; Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako Instability of all regular stationary solutions to reaction-diffusion-ODE systems (2021) (URL: https://arxiv.org/abs/2105.05023)

[13] Cygan, Szymon; Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako Stable discontinuous stationary solutions to reaction-diffusion-ODE systems (2021) (In preparation, https://arxiv.org/abs/2111.01214)

[14] Daus, Esther S.; Desvillettes, Laurent; Jüngel, Ansgar Cross-diffusion systems and fast-reaction limits, Bull. Sci. Math., Volume 159 (2020), 102824 | DOI | MR | Zbl

[15] Desvillettes, Laurent; Lepoutre, Thomas; Moussa, Ayman Entropy, duality, and cross diffusion, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 820-853 | DOI | MR | Zbl

[16] Desvillettes, Laurent; Lepoutre, Thomas; Moussa, Ayman; Trescases, Ariane On the entropic structure of reaction-cross diffusion systems, Commun. Partial Differ. Equations, Volume 40 (2015) no. 9, pp. 1705-1747 | DOI | MR | Zbl

[17] Evans, Lawrence C. A convergence theorem for a chemical diffusion-reaction system, Houston J. Math., Volume 6 (1980) no. 2, pp. 259-267 | MR | Zbl

[18] Evans, Lawrence C. Weak convergence methods for nonlinear partial differential equations. Expository lectures from the CBMS regional conference held at Loyola University of Chicago, June 27-July 1, 1988, CBMS Regional Conference Series in Mathematics, 74, American Mathematical Society, 1990 (published for the Conference Board of the Mathematical Sciences, Washington, DC) | DOI | MR | Zbl

[19] Evans, Lawrence C.; Portilheiro, Manuel Irreversibility and hysteresis for a forward-backward diffusion equation, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 11, pp. 1599-1620 | DOI | MR | Zbl

[20] Hilhorst, Danielle; Mimura, Masayasu; Ninomiya, Hirokazu Fast reaction limit of competition-diffusion systems, Handbook of differential equations: evolutionary equations. Vol. V (Dafermos, C. M. et al., eds.) (Handbook of Differential Equations), Elsevier; North-Holland, 2009, pp. 105-168 | DOI | MR | Zbl

[21] Iida, Masato; Monobe, Harunori; Murakawa, Hideki; Ninomiya, Hirozaku Vanishing, moving and immovable interfaces in fast reaction limits, J. Differ. Equations, Volume 263 (2017) no. 5, pp. 2715-2735 | DOI | MR | Zbl

[22] Jüngel, Ansgar The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, Volume 28 (2015) no. 6, pp. 1963-2001 | DOI | MR | Zbl

[23] Lafitte, Pauline; Mascia, Corrado Numerical exploration of a forward-backward diffusion equation, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 6, 1250004 | DOI | MR | Zbl

[24] Lou, Yuan; Ni, Wei-Ming Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, Volume 131 (1996) no. 1, pp. 79-131 | DOI | MR | Zbl

[25] Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., Volume 99 (2013) no. 5, pp. 509-543 | DOI | MR | Zbl

[26] Mascia, Corrado; Terracina, Andrea; Tesei, Alberto Two-phase entropy solutions of a forward-backward parabolic equation, Arch. Ration. Mech. Anal., Volume 194 (2009) no. 3, pp. 887-925 | DOI | MR | Zbl

[27] Moussa, Ayman Some variants of the classical Aubin-Lions lemma, J. Evol. Equ., Volume 16 (2016) no. 1, pp. 65-93 | DOI | MR | Zbl

[28] Moussa, Ayman; Perthame, Benoît; Salort, Delphine Backward parabolicity, cross-diffusion and Turing instability, J. Nonlinear Sci., Volume 29 (2019) no. 1, pp. 139-162 | DOI | MR | Zbl

[29] Murakawa, Hideki; Ninomiya, Hirokazu Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., Volume 379 (2011) no. 1, pp. 150-170 | DOI | MR | Zbl

[30] Murat, François A survey on compensated compactness, Contributions to modern calculus of variations (Bologna, 1985) (Pitman Research Notes in Mathematics Series), Volume 148, Longman Scientific & Technical, 1987, pp. 145-183 | MR

[31] Novick-Cohen, Amy; Pego, Robert L. Stable patterns in a viscous diffusion equation, Trans. Am. Math. Soc., Volume 324 (1991) no. 1, pp. 331-351 | DOI | MR | Zbl

[32] Pedregal, Pablo Parametrized measures and variational principles, Progress in Nonlinear Differential Equations and their Applications, 30, Birkhäuser, 1997 | DOI | MR | Zbl

[33] Perthame, Benoît; Skrzeczkowski, Jakub Fast reaction limit with nonmonotone reaction function (2020) (to appear in Communications on Pure and Applied Mathematics, https://arxiv.org/abs/2008.11086)

[34] Plotnikov, Pavel I. Equations with a variable direction of parabolicity and the hysteresis effect, Dokl. Akad. Nauk SSSR, Volume 330 (1993) no. 6, pp. 691-693 | MR | Zbl

[35] Plotnikov, Pavel I. Passage to the limit with respect to viscosity in an equation with a variable direction of parabolicity, Differ. Uravn, Volume 30 (1994) no. 4, p. 665-674, 734 | MR | Zbl

[36] Rindler, Filip Calculus of variations, Universitext, Springer, 2018 | DOI | MR | Zbl

[37] Rothe, Franz Global solutions of reaction-diffusion systems, Lecture Notes in Mathematics, 1072, Springer, 1984 | DOI | MR | Zbl

[38] Santambrogio, Filippo Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications, 87, Birkhäuser/Springer, 2015 (Calculus of variations, PDEs, and modeling,) | DOI | MR | Zbl

[39] Smarrazzo, Flavia; Tesei, Alberto Long-time behavior of solutions to a class of forward-backward parabolic equations, SIAM J. Math. Anal., Volume 42 (2010) no. 3, pp. 1046-1093 | DOI | MR | Zbl

[40] Smarrazzo, Flavia; Tesei, Alberto Degenerate regularization of forward-backward parabolic equations: the vanishing viscosity limit, Math. Ann., Volume 355 (2013) no. 2, pp. 551-584 | DOI | MR | Zbl

[41] Tartar, Luc C. Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV (Pitman Research Notes in Mathematics Series), Volume 39, Pitman Publishing Inc, 1979, pp. 136-212 | MR | Zbl

[42] Terracina, Andrea Qualitative behavior of the two-phase entropy solution of a forward-backward parabolic problem, SIAM J. Math. Anal., Volume 43 (2011) no. 1, pp. 228-252 | DOI | MR | Zbl

[43] Terracina, Andrea Non-uniqueness results for entropy two-phase solutions of forward-backward parabolic problems with unstable phase, J. Math. Anal. Appl., Volume 413 (2014) no. 2, pp. 963-975 | DOI | MR | Zbl

[44] Young, Laurence C. Generalized surfaces in the calculus of variations, Ann. Math., Volume 43 (1942), pp. 84-103 | DOI | MR | Zbl

[45] Young, Laurence C. Generalized surfaces in the calculus of variations. II, Ann. Math., Volume 43 (1942), pp. 530-544 | DOI | MR | Zbl

Cité par Sources :