In this note, we investigate the density of the exponential functional of the fractional Brownian motion. Based on the techniques of Malliavin’s calculus, we provide a log-normal upper bound for the density.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G2_151_0, author = {Tien Dung, Nguyen and Thu Hang, Nguyen and Phuong Thuy, Pham Thi}, title = {Density estimates for the exponential functionals of fractional {Brownian} motion}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--159}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G2}, year = {2022}, doi = {10.5802/crmath.274}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.274/} }
TY - JOUR AU - Tien Dung, Nguyen AU - Thu Hang, Nguyen AU - Phuong Thuy, Pham Thi TI - Density estimates for the exponential functionals of fractional Brownian motion JO - Comptes Rendus. Mathématique PY - 2022 SP - 151 EP - 159 VL - 360 IS - G2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.274/ DO - 10.5802/crmath.274 LA - en ID - CRMATH_2022__360_G2_151_0 ER -
%0 Journal Article %A Tien Dung, Nguyen %A Thu Hang, Nguyen %A Phuong Thuy, Pham Thi %T Density estimates for the exponential functionals of fractional Brownian motion %J Comptes Rendus. Mathématique %D 2022 %P 151-159 %V 360 %N G2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.274/ %R 10.5802/crmath.274 %G en %F CRMATH_2022__360_G2_151_0
Tien Dung, Nguyen; Thu Hang, Nguyen; Phuong Thuy, Pham Thi. Density estimates for the exponential functionals of fractional Brownian motion. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 151-159. doi : 10.5802/crmath.274. http://www.numdam.org/articles/10.5802/crmath.274/
[1] Gaussian-type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions, Ann. Probab., Volume 44 (2016) no. 1, pp. 399-443 | MR | Zbl
[2] Stochastic heat equation with fractional Laplacian and fractional noise: existence of the solution and analysis of its density, Acta Math. Sci., Volume 37 (2017) no. 6, pp. 1545-1566 | MR | Zbl
[3] Exponential functionals of Brownian motion. I. Probability laws at fixed time, Probab. Surv., Volume 2 (2005), pp. 312-347 | MR | Zbl
[4] Exponential functionals of Brownian motion. II. Some related diffusion processes, Probab. Surv., Volume 2 (2005), pp. 348-384 | MR | Zbl
[5] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006 | Zbl
[6] Smoothness and Gaussian density estimates for stochastic functional differential equations with fractional noise, Stat. Optim. Inf. Comput., Volume 8 (2020) no. 4, pp. 822-833 | DOI | MR
[7] The density of solutions to multifractional stochastic Volterra integro-differential equations, Nonlinear Anal., Theory Methods Appl., Volume 130 (2016), pp. 176-189 | DOI | MR | Zbl
[8] Kolmogorov distance between the exponential functionals of fractional Brownian motion, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 7, pp. 629-635 | MR | Zbl
[9] Gaussian lower bounds for the density via Malliavin calculus, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 1, pp. 79-88 | MR | Zbl
[10] Exponential functionals of Brownian motion and related processes, Springer Finance, Springer, 2001 | Zbl
Cité par Sources :