Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain , we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider , a sequence of perturbed conductivity matrices differing from a smooth background conductivity matrix on a measurable set well within the domain, and we assume in . Adapting the limit measure, we show that the general representation formula introduced for bounded contrasts in a previous work from 2003 can be extended to unbounded sequences of matrix valued conductivities.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G2_127_0, author = {Capdeboscq, Yves and Ong, Shaun Chen Yang}, title = {Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities}, journal = {Comptes Rendus. Math\'ematique}, pages = {127--150}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G2}, year = {2022}, doi = {10.5802/crmath.273}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.273/} }
TY - JOUR AU - Capdeboscq, Yves AU - Ong, Shaun Chen Yang TI - Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities JO - Comptes Rendus. Mathématique PY - 2022 SP - 127 EP - 150 VL - 360 IS - G2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.273/ DO - 10.5802/crmath.273 LA - en ID - CRMATH_2022__360_G2_127_0 ER -
%0 Journal Article %A Capdeboscq, Yves %A Ong, Shaun Chen Yang %T Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities %J Comptes Rendus. Mathématique %D 2022 %P 127-150 %V 360 %N G2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.273/ %R 10.5802/crmath.273 %G en %F CRMATH_2022__360_G2_127_0
Capdeboscq, Yves; Ong, Shaun Chen Yang. Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 127-150. doi : 10.5802/crmath.273. http://www.numdam.org/articles/10.5802/crmath.273/
[1] Lectures on Elliptic Methods for Hybrid Inverse Problems, Cours Spécialisés (Paris), 25, Société Mathématique de France, 2018 | Zbl
[2] Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, 1846, Springer, 2004 | DOI | Zbl
[3] Ginzburg–Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser, 2017 | DOI | Zbl
[4] A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math., Volume 93 (2003) no. 4, pp. 635-654 | DOI | MR | Zbl
[5] On the scattered field generated by a ball inhomogeneity of constant index, Asymptotic Anal., Volume 77 (2012) no. 3-4, pp. 197-246 | DOI | MR | Zbl
[6] Corrigendum: On the scattered field generated by a ball inhomogeneity of constant index, Asymptotic Anal., Volume 88 (2014) no. 3, pp. 185-186 | DOI | Zbl
[7] On the scattered field generated by a ball inhomogeneity of constant index in dimension three, Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion. Proceedings of the conference, University of Oxford, UK, June 28 – July 1, 2011 (Ammari, Habib et al., eds.) (Contemporary Mathematics), Volume 577, American Mathematical Society, 2012, pp. 61-80 | DOI | MR | Zbl
[8] A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, M2AN, Math. Model. Numer. Anal., Volume 37 (2003) no. 1, pp. 159-173 | DOI | Numdam | MR | Zbl
[9] A review of some recent work on impedance imaging for inhomogeneities of low volume fraction, Partial differential equations and inverse problems. Proceedings of the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems, Santiago, Chile, January 6–18, 2003 (Conca, Carlos et al., eds.) (Contemporary Mathematics), Volume 362, American Mathematical Society, 2004, pp. 69-87 | DOI | MR | Zbl
[10] Pointwise polarization tensor bounds, and applications to voltage perturbations caused by thin inhomogeneities, Asymptotic Anal., Volume 50 (2006) no. 3-4, pp. 175-204 | MR | Zbl
[11] Uniform asymptotic expansion of the voltage potential in the presence of thin inhomogeneities with arbitrary conductivity, Chin. Ann. Math., Ser. B, Volume 38 (2017) no. 1, pp. 293-344 | DOI | MR | Zbl
[12] -estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Unione Mat. Ital., VII. Ser., A, Volume 10 (1996) no. 2, pp. 409-420 | MR | Zbl
[13] The theory of composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, 2002 | DOI | Zbl
[14] On the cloaking effects associated with anomalous localized resonances, Proc. R. Soc. Lond., Ser. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | MR | Zbl
[15] Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions, Math. Models Methods Appl. Sci., Volume 29 (2019) no. 2, pp. 317-354 | DOI | MR | Zbl
[16] Invisibilité par résonance localisée anormale. Une liaison entre la résonance localisée et l’exposion de la puissance pour les milieux doublement complémentaires, C. R. Math. Acad. Sci. Paris, Volume 353 (2006) no. 1, pp. 41-46 | Zbl
[17] Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime, J. Anal. Math., Volume 138 (2019) no. 1, pp. 157-184 | DOI | MR | Zbl
[18] A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 6, pp. 2283-2315 | DOI | Numdam | MR | Zbl
[19] The Jacobian of Solutions to the Conductivity Equation and Problems arising from EIT, Ph. D. Thesis, University of Oxford, Oxford, United Kingdom (2019)
[20] Resonances near the real axis for transparent obstacles, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 411-438 | DOI | MR | Zbl
[21] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Volume 15 (1965) no. 1, pp. 189-257 | DOI | Numdam | Zbl
Cité par Sources :