Statistiques
On the nonparametric estimation of the functional expectile regression
[Sur l’estimation non-paramétrique dans un modèle de régression expectile fonctionnelle]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 267-272.

Dans cette note, nous nous intéressons au problème d’estimation non-paramétrique de la fonction de régression expectile lorsqu’on régresse une variable réelle sur une variable fonctionnelle. Plus précisément, nous obtenons la convergence presque complète de l’estimateur à noyau de la fonction de régression expectile sous des conditions générales. Nous discutons brièvement notre résultat et mettons en évidence le lien avec la fonction de régression.

In this note, we investigate the kernel-type estimator of the nonparametric expectile regression model for functional data. More precisely, we establish the almost complete convergence rate of this estimator under some mild conditions. Finally, the usefulness of the expectile regression is discussed, in particular, the connection with the regression function.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.27
Mohammedi, Mustapha 1 ; Bouzebda, Salim 2 ; Laksaci, Ali 3

1 Université Djillali Liabès, BP 89, 22000, Sidi Bel Abbès, Algérie, L.S.P.S., Sidi Bel Abbès, Algérie
2 Alliance Sorbonne Université, Université de Technologie de Compiègne, L.M.A.C., Compiègne, France
3 Department of Mathematics, College of Science, Unit for Statistical Research and Studies Support, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
@article{CRMATH_2020__358_3_267_0,
     author = {Mohammedi, Mustapha and Bouzebda, Salim and Laksaci, Ali},
     title = {On the nonparametric estimation of the functional expectile regression},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--272},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.27},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.27/}
}
TY  - JOUR
AU  - Mohammedi, Mustapha
AU  - Bouzebda, Salim
AU  - Laksaci, Ali
TI  - On the nonparametric estimation of the functional expectile regression
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 267
EP  - 272
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.27/
DO  - 10.5802/crmath.27
LA  - en
ID  - CRMATH_2020__358_3_267_0
ER  - 
%0 Journal Article
%A Mohammedi, Mustapha
%A Bouzebda, Salim
%A Laksaci, Ali
%T On the nonparametric estimation of the functional expectile regression
%J Comptes Rendus. Mathématique
%D 2020
%P 267-272
%V 358
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.27/
%R 10.5802/crmath.27
%G en
%F CRMATH_2020__358_3_267_0
Mohammedi, Mustapha; Bouzebda, Salim; Laksaci, Ali. On the nonparametric estimation of the functional expectile regression. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 267-272. doi : 10.5802/crmath.27. http://www.numdam.org/articles/10.5802/crmath.27/

[1] Abdous, Belkacem; Remillard, Bruno Relating quantiles and expectiles under weighted-symmetry, Ann. Inst. Stat. Math., Volume 47 (1995) no. 2, pp. 371-384 | DOI | MR | Zbl

[2] Aigner, Dennis J.; Amemiya, Takeshi; Poirier, Dale J. On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function, Int. Econ. Rev., Volume 17 (1976), pp. 377-396 | DOI | MR | Zbl

[3] Al-Awadhi, Fahimah A.; Kaid, Zoulikha; Laksaci, Ali; Ouassou, Idir; Rachdi, Mustapha Functional data analysis: local linear estimation of the L 1 -conditional quantiles, Stat. Methods Appl., Volume 28 (2019) no. 2, pp. 217-240 | DOI | MR | Zbl

[4] Functional Statistics and Related Fields (Corunna, Spain, June 15–17, 2017) (Aneiros, Germán; Bongiorno, Enea G.; Cao, Ricardo; Vieu, Philippe, eds.), Contributions to Statistics, Springer, 2017 | Zbl

[5] Bellini, Fabio; Bernardino, E. D. Risk management with expectiles, Eur. J. Finance, Volume 23 (2017) no. 6, pp. 487-506 | DOI

[6] Bellini, Fabio; Bignozzi, Valeria; Puccetti, Giovanni Conditional expectiles, time consistency and mixture convexity properties, Insur. Math. Econ., Volume 82 (2018), pp. 117-123 | DOI | MR | Zbl

[7] Daouia, Abdelaati; Gijbels, Irène; Stupfler, Gilles Extremiles: A New Perspective on Asymmetric Least Squares, J. Am. Stat. Assoc., Volume 114 (2019) no. 527, pp. 1366-1381 | DOI | MR | Zbl

[8] Daouia, Abdelaati; Paindaveine, Davy From halfspace m-depth to multiple-output expectile regression (2019) (https://arxiv.org/abs/1905.12718)

[9] Efron, Bradley Regression percentiles using asymmetric squared error loss, Stat. Sin., Volume 1 (1991) no. 1, pp. 93-125 | MR | Zbl

[10] Ehm, Werner; Gneiting, Tilmann; Jordan, Alexander; Krüger, Fabian Of quantiles and expectiles: consistent scoring functions, Choquet representations, and forecast rankings, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 78 (2016) no. 3, pp. 505-562 | MR | Zbl

[11] Ferraty, Frédéric; Vieu, Philippe Nonparametric functional data analysis. Theory and Practice, Springer Series in Statistics, Springer, 2006 | Zbl

[12] Jones, Michael C. Expectiles and M-quantiles are quantiles, Stat. Probab. Lett., Volume 20 (1994) no. 2, pp. 149-153 | DOI | MR | Zbl

[13] Koenker, Roger; Bassett, Gilbert jun. Regression quantiles, Econometrica, Volume 46 (1978), pp. 33-50 | DOI | MR | Zbl

[14] Kuan, Chung-Ming; Yeh, Jin-Huei; Hsu, Yu-Chin Assessing value at risk with CARE, the Conditional Autoregressive Expectile models, J. Econom., Volume 150 (2009) no. 2, pp. 261-270 | DOI | MR | Zbl

[15] Laksaci, Ali; Lemdani, Mohamed; Ould-Saïd, Elias A generalized L 1 -approach for a kernel estimator of conditional quantile with functional regressors: consistency and asymptotic normality, Stat. Probab. Lett., Volume 79 (2009) no. 8, pp. 1065-1073 | DOI | MR | Zbl

[16] Laksaci, Ali; Lemdani, Mohamed; Ould-Saïd, Elias Asymptotic results for an L 1 -norm kernel estimator of the conditional quantile for functional dependent data with application to climatology, Sankhyā, Ser. A, Volume 73 (2011) no. 1, pp. 125-141 | DOI | MR | Zbl

[17] Maume-Deschamps, Véronique; Rullière, Didier; Said, Khalil Multivariate extensions of expectiles risk measures, Depend. Model., Volume 5 (2017), pp. 20-44 | DOI | MR | Zbl

[18] Newey, Whitney K.; Powell, James L. Asymmetric least squares estimation and testing, Econometrica, Volume 55 (1987), pp. 819-847 | DOI | MR | Zbl

[19] Ramsay, James O.; Silverman, Bernard W. Functional Data Analysis, Springer Series in Statistics, Springer, 2005 | Zbl

[20] Taylor, J. W. Estimating Value at Risk and Expected Shortfall Using Expectiles, J. Financial Econom., Volume 6 (2008), pp. 231-252 | DOI

[21] Waltrup, Linda Schulze; Sobotka, Fabian; Kneib, Thomas; Kauermann, Goran Expectile and quantile regression—David and Goliath?, Stat. Model., Volume 15 (2015) no. 5, pp. 433-456 | DOI | MR

Cité par Sources :