Dans cette note, nous nous intéressons au problème d’estimation non-paramétrique de la fonction de régression expectile lorsqu’on régresse une variable réelle sur une variable fonctionnelle. Plus précisément, nous obtenons la convergence presque complète de l’estimateur à noyau de la fonction de régression expectile sous des conditions générales. Nous discutons brièvement notre résultat et mettons en évidence le lien avec la fonction de régression.
In this note, we investigate the kernel-type estimator of the nonparametric expectile regression model for functional data. More precisely, we establish the almost complete convergence rate of this estimator under some mild conditions. Finally, the usefulness of the expectile regression is discussed, in particular, the connection with the regression function.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_3_267_0, author = {Mohammedi, Mustapha and Bouzebda, Salim and Laksaci, Ali}, title = {On the nonparametric estimation of the functional expectile regression}, journal = {Comptes Rendus. Math\'ematique}, pages = {267--272}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.27}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.27/} }
TY - JOUR AU - Mohammedi, Mustapha AU - Bouzebda, Salim AU - Laksaci, Ali TI - On the nonparametric estimation of the functional expectile regression JO - Comptes Rendus. Mathématique PY - 2020 SP - 267 EP - 272 VL - 358 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.27/ DO - 10.5802/crmath.27 LA - en ID - CRMATH_2020__358_3_267_0 ER -
%0 Journal Article %A Mohammedi, Mustapha %A Bouzebda, Salim %A Laksaci, Ali %T On the nonparametric estimation of the functional expectile regression %J Comptes Rendus. Mathématique %D 2020 %P 267-272 %V 358 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.27/ %R 10.5802/crmath.27 %G en %F CRMATH_2020__358_3_267_0
Mohammedi, Mustapha; Bouzebda, Salim; Laksaci, Ali. On the nonparametric estimation of the functional expectile regression. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 267-272. doi : 10.5802/crmath.27. http://www.numdam.org/articles/10.5802/crmath.27/
[1] Relating quantiles and expectiles under weighted-symmetry, Ann. Inst. Stat. Math., Volume 47 (1995) no. 2, pp. 371-384 | DOI | MR | Zbl
[2] On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function, Int. Econ. Rev., Volume 17 (1976), pp. 377-396 | DOI | MR | Zbl
[3] Functional data analysis: local linear estimation of the -conditional quantiles, Stat. Methods Appl., Volume 28 (2019) no. 2, pp. 217-240 | DOI | MR | Zbl
[4] Functional Statistics and Related Fields (Corunna, Spain, June 15–17, 2017) (Aneiros, Germán; Bongiorno, Enea G.; Cao, Ricardo; Vieu, Philippe, eds.), Contributions to Statistics, Springer, 2017 | Zbl
[5] Risk management with expectiles, Eur. J. Finance, Volume 23 (2017) no. 6, pp. 487-506 | DOI
[6] Conditional expectiles, time consistency and mixture convexity properties, Insur. Math. Econ., Volume 82 (2018), pp. 117-123 | DOI | MR | Zbl
[7] Extremiles: A New Perspective on Asymmetric Least Squares, J. Am. Stat. Assoc., Volume 114 (2019) no. 527, pp. 1366-1381 | DOI | MR | Zbl
[8] From halfspace m-depth to multiple-output expectile regression (2019) (https://arxiv.org/abs/1905.12718)
[9] Regression percentiles using asymmetric squared error loss, Stat. Sin., Volume 1 (1991) no. 1, pp. 93-125 | MR | Zbl
[10] Of quantiles and expectiles: consistent scoring functions, Choquet representations, and forecast rankings, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 78 (2016) no. 3, pp. 505-562 | MR | Zbl
[11] Nonparametric functional data analysis. Theory and Practice, Springer Series in Statistics, Springer, 2006 | Zbl
[12] Expectiles and -quantiles are quantiles, Stat. Probab. Lett., Volume 20 (1994) no. 2, pp. 149-153 | DOI | MR | Zbl
[13] Regression quantiles, Econometrica, Volume 46 (1978), pp. 33-50 | DOI | MR | Zbl
[14] Assessing value at risk with CARE, the Conditional Autoregressive Expectile models, J. Econom., Volume 150 (2009) no. 2, pp. 261-270 | DOI | MR | Zbl
[15] A generalized -approach for a kernel estimator of conditional quantile with functional regressors: consistency and asymptotic normality, Stat. Probab. Lett., Volume 79 (2009) no. 8, pp. 1065-1073 | DOI | MR | Zbl
[16] Asymptotic results for an -norm kernel estimator of the conditional quantile for functional dependent data with application to climatology, Sankhyā, Ser. A, Volume 73 (2011) no. 1, pp. 125-141 | DOI | MR | Zbl
[17] Multivariate extensions of expectiles risk measures, Depend. Model., Volume 5 (2017), pp. 20-44 | DOI | MR | Zbl
[18] Asymmetric least squares estimation and testing, Econometrica, Volume 55 (1987), pp. 819-847 | DOI | MR | Zbl
[19] Functional Data Analysis, Springer Series in Statistics, Springer, 2005 | Zbl
[20] Estimating Value at Risk and Expected Shortfall Using Expectiles, J. Financial Econom., Volume 6 (2008), pp. 231-252 | DOI
[21] Expectile and quantile regression—David and Goliath?, Stat. Model., Volume 15 (2015) no. 5, pp. 433-456 | DOI | MR
Cité par Sources :