Let be a noncommutative Artin–Schelter regular algebra of dimension with the Nakayama automorphism and a PBW deformation of with the Nakayama automorphism . We prove that any graded Ore extension and any filtered Ore extension are -Calabi–Yau.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G7_739_0, author = {Shen, Yuan and Guo, Yang}, title = {The {Calabi{\textendash}Yau} property of {Ore} extensions of two-dimensional {Artin{\textendash}Schelter} regular algebras and their {PBW} deformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--749}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G7}, year = {2022}, doi = {10.5802/crmath.268}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.268/} }
TY - JOUR AU - Shen, Yuan AU - Guo, Yang TI - The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations JO - Comptes Rendus. Mathématique PY - 2022 SP - 739 EP - 749 VL - 360 IS - G7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.268/ DO - 10.5802/crmath.268 LA - en ID - CRMATH_2022__360_G7_739_0 ER -
%0 Journal Article %A Shen, Yuan %A Guo, Yang %T The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations %J Comptes Rendus. Mathématique %D 2022 %P 739-749 %V 360 %N G7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.268/ %R 10.5802/crmath.268 %G en %F CRMATH_2022__360_G7_739_0
Shen, Yuan; Guo, Yang. The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations. Comptes Rendus. Mathématique, Tome 360 (2022) no. G7, pp. 739-749. doi : 10.5802/crmath.268. http://www.numdam.org/articles/10.5802/crmath.268/
[1] Calabi–Yau algebras viewed as deformations of Poisson algebras, Algebr. Represent. Theory, Volume 17 (2014) no. 3, pp. 735-773 | DOI | MR | Zbl
[2] Poincaré–Birkhoff–Witt deformations of Calabi–Yau algebras, J. Noncommut. Geom., Volume 1 (2007) no. 2, pp. 241-270 | DOI | Zbl
[3] Graded Calabi–Yau algebras of dimension , J. Pure Appl. Algebra, Volume 212 (2008) no. 1, pp. 14-32 | DOI | MR | Zbl
[4] Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type, J. Algebra, Volume 181 (1996) no. 2, pp. 315-328 | DOI | Zbl
[5] Multilinear forms and graded algebras, J. Algebra, Volume 317 (2007) no. 1, pp. 198-225 | DOI | MR | Zbl
[6] Calabi–Yau algebras (2007) (https://arxiv.org/abs/math/0612139)
[7] Untwisting a twisted Calabi–Yau algebra, J. Algebra, Volume 406 (2014), pp. 272-289 | DOI | MR | Zbl
[8] Deformations of Koszul Artin–Schelter Gorenstein algebras, Manuscr. Math., Volume 141 (2013) no. 3-4, pp. 463-483 | MR | Zbl
[9] Skew polynomial algebras with coefficients in Koszul Artin-Schelter regular algebras, J. Algebra, Volume 390 (2013), pp. 231-249 | MR | Zbl
[10] Graded -Calabi–Yau algebras as Ore extensions of -Calabi–Yau algebras, Proc. Am. Math. Soc., Volume 143 (2015) no. 4, pp. 1423-1434 | MR | Zbl
[11] Nakayama automorphisms of Ore extensions over polynomial algebras, Glasg. Math. J., Volume 62 (2020) no. 3, pp. 518-530 | DOI | MR | Zbl
[12] Twisted Calabi–Yau property of Ore extensions, J. Noncommut. Geom., Volume 8 (2014) no. 2, pp. 587-609 | DOI | MR | Zbl
[13] The structure of AS-Gorenstein algebras, Adv. Math., Volume 226 (2011) no. 5, pp. 4061-4095 | DOI | MR | Zbl
[14] -Koszul Artin-Schelter regular algebras, J. Algebra, Volume 446 (2016), pp. 373-399 corrigendum in ibid. 493 (2018), p. 500-501 | DOI | MR | Zbl
[15] Coherent algebras and noncommutative projective lines, J. Algebra, Volume 319 (2008) no. 8, pp. 3280-3290 | DOI | MR | Zbl
[16] Noncommutative proj and coherent algebras, Math. Res. Lett., Volume 12 (2005) no. 1, pp. 63-74 | DOI | MR | Zbl
[17] Skew Calabi–Yau algebras and homological identities, Adv. Math., Volume 264 (2014), pp. 308-354 | DOI | MR | Zbl
[18] Nakayama automorphisms of graded Ore extensions of Koszul Artin-Schelter regular algebras, J. Algebra, Volume 579 (2021), pp. 114-151 | DOI | MR | Zbl
[19] Nakayama automorphisms of PBW deformations and Hopf actions, Sci. China, Math., Volume 59 (2016) no. 4, pp. 661-672 | DOI | MR | Zbl
[20] A -Calabi–Yau algebra with symmetry constructed from the Octonions (2011) (https://arxiv.org/abs/1104.3824)
[21] Nakayama automorphisms and modular derivations in filtered deformations, J. Algebra, Volume 572 (2021), pp. 381-421 | MR | Zbl
[22] Non-Noetherian regular rings of dimension , Proc. Am. Math. Soc., Volume 126 (1998) no. 6, pp. 1645-1653 | DOI | MR | Zbl
Cité par Sources :