We obtain weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator in and for other related operators, for , extending earlier results of Thangavelu and of Karadzhov.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G2_111_0, author = {Chen, Peng and Li, Ji and Ward, Lesley and Yan, Lixin}, title = {Weak-type endpoint bounds for {Bochner{\textendash}Riesz} means for the {Hermite} operator}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--126}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G2}, year = {2022}, doi = {10.5802/crmath.265}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.265/} }
TY - JOUR AU - Chen, Peng AU - Li, Ji AU - Ward, Lesley AU - Yan, Lixin TI - Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator JO - Comptes Rendus. Mathématique PY - 2022 SP - 111 EP - 126 VL - 360 IS - G2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.265/ DO - 10.5802/crmath.265 LA - en ID - CRMATH_2022__360_G2_111_0 ER -
%0 Journal Article %A Chen, Peng %A Li, Ji %A Ward, Lesley %A Yan, Lixin %T Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator %J Comptes Rendus. Mathématique %D 2022 %P 111-126 %V 360 %N G2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.265/ %R 10.5802/crmath.265 %G en %F CRMATH_2022__360_G2_111_0
Chen, Peng; Li, Ji; Ward, Lesley; Yan, Lixin. Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 111-126. doi : 10.5802/crmath.265. http://www.numdam.org/articles/10.5802/crmath.265/
[1] Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., Volume 21 (2011) no. 6, pp. 1239-1295 | DOI | MR | Zbl
[2] Oscillatory integrals and a multiplier problem for the disc, Stud. Math., Volume 44 (1972), pp. 287-299 | DOI | MR | Zbl
[3] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom., Volume 17 (1982) no. 1, pp. 15-53 | MR | Zbl
[4] Bounds on the maximal Bochner–Riesz means for elliptic operators (2018) (to appear in Transactions of the American Mathematical Society, https://arxiv.org/abs/1803.03369)
[5] Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner–Riesz means, J. Anal. Math., Volume 129 (2016), pp. 219-283 | DOI | MR | Zbl
[6] Weak type endpoint bounds for Bochner–Riesz multipliers, Rev. Mat. Iberoam., Volume 3 (1987) no. 1, pp. 25-31 | DOI | MR | Zbl
[7] Weak type bounds for rough operators, Ann. Math., Volume 128 (1988) no. 1, pp. 19-42 | DOI | MR | Zbl
[8] The weak type convergence of eigenfunction expansions for pseudo-differential operators, Invent. Math., Volume 94 (1988) no. 2, pp. 421-453 | DOI | Zbl
[9] Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem, Proc. Lond. Math. Soc., Volume 96 (2008) no. 2, pp. 507-544 | DOI | Zbl
[10] Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002) no. 2, pp. 443-485 | DOI | MR | Zbl
[11] Inequalities for strongly singular convolution operators, Acta Math., Volume 124 (1970), pp. 9-36 | DOI | MR | Zbl
[12] A note on spherical summation multipliers, Isr. J. Math., Volume 15 (1973), pp. 44-52 | DOI | MR | Zbl
[13] Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, 2014 | Zbl
[14] On the mean inversion of Fourier and Hankel transforms, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 996-999 | DOI | MR | Zbl
[15] Riesz summability of multiple Hermite series in spaces, C. R. Acad. Bulg. Sci., Volume 47 (1994) no. 2, pp. 5-8 | MR | Zbl
[16] Divergence of eigenfunction expansions, J. Funct. Anal., Volume 46 (1982), pp. 28-44 | DOI | MR | Zbl
[17] eigenfunction bounds for the Hermite operator, Duke Math. J., Volume 128 (2005) no. 2, pp. 369-392 | MR | Zbl
[18] Improved bounds for Bochner-Riesz and maximal Bochner–Riesz operators, Duke Math. J., Volume 122 (2004) no. 1, pp. 205-232 | MR | Zbl
[19] Divergenz von Spektralentwicklungen in -Räumen, Linear operators and approximation, II (Proc. Conf., Oberwolfach Math. Res. Inst., Oberwolfach, 1974) (International Series of Numerical Mathematics), Volume 25, Birkhäuser, 1974, pp. 521-530 | MR | Zbl
[20] Endpoint estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J., Volume 40 (1991) no. 2, pp. 471-533 | DOI | MR | Zbl
[21] Endpoint inequalities for Bochner–Riesz multipliers in the plane, Pac. J. Math., Volume 174 (1996) no. 2, pp. 543-553 | DOI | MR | Zbl
[22] Riesz transform, Gaussian bounds and the method of wave equation, Math. Z., Volume 247 (2004) no. 3, pp. 643-662 | MR | Zbl
[23] On the convergence of Riesz means on compact manifolds, Ann. Math., Volume 126 (1987) no. 2, pp. 439-447 | DOI | MR | Zbl
[24] Concerning the norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-134 | DOI | MR | Zbl
[25] Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 (with the assistance of Timothy S. Murphy) | Zbl
[26] Introduction to Fourier Analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971 | Zbl
[27] Weak-type endpoint bounds for Riesz means, Proc. Am. Math. Soc., Volume 124 (1996) no. 9, pp. 2797-2805 | MR | Zbl
[28] The weak-type endpoint Bochner–Riesz conjecture and related topics, Indiana Univ. Math. J., Volume 47 (1998) no. 3, pp. 1097-1124 | MR | Zbl
[29] Some recent progress on the restriction conjecture, Fourier analysis and convexity (Brandolini, Luca et al., eds.) (Applied and Numerical Harmonic Analysis), Birkhäuser, 2004, pp. 217-243 | Zbl
[30] A bilinear approach to the restriction and Kakeya conjectures, J. Am. Math. Soc., Volume 11 (1998) no. 4, pp. 967-1000 | MR | Zbl
[31] Summability of Hermite expansions. I, Trans. Am. Math. Soc., Volume 314 (1989) no. 1, pp. 119-142 | DOI | MR | Zbl
[32] Summability of Hermite expansions. II, Trans. Am. Math. Soc., Volume 314 (1989) no. 1, pp. 143-170 | DOI | MR | Zbl
[33] Lectures on Hermite and Laguerre expansions, Mathematical Notes (Princeton), 42, Princeton University Press, 1993 (with a preface by Robert S. Strichartz) | DOI | Zbl
[34] Hermite and special Hermite expansions revisited, Duke Math. J., Volume 94 (1998) no. 2, pp. 257-278 | MR | Zbl
Cité par Sources :