In this paper we introduce the notion of deformation cohomology for singular foliations and related objects (namely integrable differential forms and Nambu structures), and study it in the local case, i.e., in the neighborhood of a point.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_3_273_0, author = {Monnier, Philippe and Nguyen, Tien Zung}, title = {Deformation of singular foliations, 1: {Local} deformation cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--283}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.26}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.26/} }
TY - JOUR AU - Monnier, Philippe AU - Nguyen, Tien Zung TI - Deformation of singular foliations, 1: Local deformation cohomology JO - Comptes Rendus. Mathématique PY - 2020 SP - 273 EP - 283 VL - 358 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.26/ DO - 10.5802/crmath.26 LA - en ID - CRMATH_2020__358_3_273_0 ER -
%0 Journal Article %A Monnier, Philippe %A Nguyen, Tien Zung %T Deformation of singular foliations, 1: Local deformation cohomology %J Comptes Rendus. Mathématique %D 2020 %P 273-283 %V 358 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.26/ %R 10.5802/crmath.26 %G en %F CRMATH_2020__358_3_273_0
Monnier, Philippe; Nguyen, Tien Zung. Deformation of singular foliations, 1: Local deformation cohomology. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 273-283. doi : 10.5802/crmath.26. http://www.numdam.org/articles/10.5802/crmath.26/
[1] The holonomy groupoid of a singular foliation, J. Reine Angew. Math., Volume 626 (2009), pp. 1-37 | DOI | MR | Zbl
[2] Stefan–Sussmann singular foliations, singular subalgebroids and their associated sheaves, Int. J. Geom. Methods Mod. Phys., Volume 13 (2016), 1641001, 17 pages | MR | Zbl
[3] Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts, Monographs in Mathematics, 82, Birkhäuser, 1985 | Zbl
[4] Linearization of Nambu structures, Compos. Math., Volume 117 (1999) no. 1, p. 77--98 | MR | Zbl
[5] Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser, 2005 | MR | Zbl
[6] A cohomology for foliated manifolds, Comment. Math. Helv., Volume 50 (1975), pp. 197-218 | DOI | MR | Zbl
[7] On the accessibility problem in control theory, International symposium on nonlinear differential equations and nonlinear mechanics, Academic Press Inc., 1963, pp. 327-332 | Zbl
[8] Frobenius avec singularités. II. Le cas général, Invent. Math., Volume 39 (1977) no. 1, pp. 67-89 | DOI | Zbl
[9] Commuting Foliations, Regul. Chaotic Dyn., Volume 18 (2013) no. 6, pp. 608-622 | MR | Zbl
[10] Computations of Nambu-Poisson cohomologies, Int. J. Math., Volume 26 (2001) no. 2, pp. 65-81 | DOI | MR | Zbl
[11] Poisson cohomology in dimension two, Isr. J. Math., Volume 129 (2002), pp. 189-207 | DOI | MR | Zbl
[12] Sur les espaces fibrés et les variétés feuilletées. II: Sur certaines propriétés topologiques des variétés feuilletées (Actualités scientifiques et industrielles), Volume 1183, Hermann & Cie, 1952, p. 5-89, 155–156 | Zbl
[13] Accessible sets, orbits, and foliations with singularities, Proc. Lond. Math. Soc., Volume 29 (1974), pp. 699-713 | DOI | MR | Zbl
[14] Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc., Volume 180 (1973), pp. 171-188 | DOI | MR | Zbl
[15] A generalization of the Reeb stability theorem, Topology, Volume 13 (1974), pp. 347-352 | DOI | MR | Zbl
[16] New results on the linearization of Nambu structures, J. Math. Pures Appl., Volume 99 (2013) no. 2, pp. 211-218 | DOI | MR | Zbl
Cité par Sources :