For any complete -algebraic variety Y and its underlying compact -analytic space , it follows from the well known GAGA principle that the algebraic Picard group and the analytic Picard group are isomorphic. Our main purpose here is to provide a simple proof of an analogous situation for non complete -algebraic varieties, namely -algebraic affine hypersurfaces with at most isolated singularities.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G2_103_0, author = {Tan, Vo Van}, title = {On the {GAGA} principle for algebraic affine hypersurfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {103--110}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G2}, year = {2022}, doi = {10.5802/crmath.254}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.254/} }
TY - JOUR AU - Tan, Vo Van TI - On the GAGA principle for algebraic affine hypersurfaces JO - Comptes Rendus. Mathématique PY - 2022 SP - 103 EP - 110 VL - 360 IS - G2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.254/ DO - 10.5802/crmath.254 LA - en ID - CRMATH_2022__360_G2_103_0 ER -
%0 Journal Article %A Tan, Vo Van %T On the GAGA principle for algebraic affine hypersurfaces %J Comptes Rendus. Mathématique %D 2022 %P 103-110 %V 360 %N G2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.254/ %R 10.5802/crmath.254 %G en %F CRMATH_2022__360_G2_103_0
Tan, Vo Van. On the GAGA principle for algebraic affine hypersurfaces. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 103-110. doi : 10.5802/crmath.254. http://www.numdam.org/articles/10.5802/crmath.254/
[1] Deformations of singularities and the homology of intersection spaces, J. Topol. Anal., Volume 4 (2012) no. 4, p. 413--448 | DOI | MR | Zbl
[2] On the homology and cohomology of complete intersection with isolated singularities, Compos. Math., Volume 58 (1986), pp. 321-339 | Numdam | MR | Zbl
[3] Singularities and topology of hypersurfaces, Universitext, Springer, 1992 | DOI | Zbl
[4] On Picard groups of algebraic fibre spaces, J. Pure Appl. Algebra, Volume 3 (1973), pp. 269-280 | DOI | MR | Zbl
[5] Lectures on algebraic topology, W. A. Benjamin, Inc., 1972
[6] Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux. (SGA 2). Augmenté d’un exposé par Michèle Raynaud. Séminaire de géométrie algébrique du Bois-Marie 1962, Advanced Studies in Pure Mathematics (Amsterdam), 2, North-Holland; Masson, 1968 | Zbl
[7] Revêtements étales et groupe fondamental (SGA I) (Grothendieck, Alexander, ed.), Lecture Notes in Mathematics, 224, Springer, 1971 | DOI | Zbl
[8] On the Picard group for non-complete algebraic varieties, Franco-Japanese singularities. Proceedings of the 2nd Franco-Japanese singularity conference, CIRM, Marseille-Luminy, France, September 9–13, 2002 (Séminaires et Congrès), Volume 10, Société Mathématique de France, 2005, pp. 71-86 | MR | Zbl
[9] Ample subvarieties of Algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970 | DOI | Zbl
[10] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | Zbl
[11] On the homotopy groups of an affine algebraic hypersurface, Ann. Math., Volume 84 (1966), pp. 197-216 | DOI | MR | Zbl
[12] Topology of -regular spaces and algebraic sets, Manifolds—Tokyo 1973 (Proc. Internat. Conf. on Manifolds and Related Topics in Topology), University of Tokyo Press (1975), pp. 153-159 | MR | Zbl
[13] Partial Poincare duality for k-regular spaces and complex algebraic sets, Topology, Volume 16 (1977) no. 1, pp. 33-50 | DOI | MR | Zbl
[14] The Picard sequence of a fibration, Proc. Am. Math. Soc., Volume 53 (1975), pp. 37-40 | MR | Zbl
[15] On the topology of isolated singularities in analytic spaces, Progress in Mathematics, 241, Birkhäuser, 2006 | Zbl
[16] Algebraic varieties bihomorphic to , Tôhoku Math. J., Volume 30 (1978), pp. 455-461 | Zbl
[17] On the parallelism between algebraic and analytic Picard groups of algebraic affine hypersurfaces (to appear) | Numdam
[18] Théorie de Hodge et géométrie algébrique complexe, Contributions in Mathematical and Computational Sciences, 10, Société Mathématique de France, 2002 | Zbl
Cité par Sources :