Analyse et géométrie complexes
On the GAGA principle for algebraic affine hypersurfaces
Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 103-110.

For any complete -algebraic variety Y and its underlying compact -analytic space 𝒴, it follows from the well known GAGA principle that the algebraic Picard group Pic(Y) and the analytic Picard group ic(𝒴) are isomorphic. Our main purpose here is to provide a simple proof of an analogous situation for non complete -algebraic varieties, namely -algebraic affine hypersurfaces with at most isolated singularities.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.254
Classification : 32E10, 32Q28, 14B07, 14C22, 14J30, 57P10
Tan, Vo Van 1

1 Department of Mathematics, Suffolk University, Boston, Ma. 02114, USA
@article{CRMATH_2022__360_G2_103_0,
     author = {Tan, Vo Van},
     title = {On the {GAGA} principle for algebraic affine hypersurfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {103--110},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G2},
     year = {2022},
     doi = {10.5802/crmath.254},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.254/}
}
TY  - JOUR
AU  - Tan, Vo Van
TI  - On the GAGA principle for algebraic affine hypersurfaces
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 103
EP  - 110
VL  - 360
IS  - G2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.254/
DO  - 10.5802/crmath.254
LA  - en
ID  - CRMATH_2022__360_G2_103_0
ER  - 
%0 Journal Article
%A Tan, Vo Van
%T On the GAGA principle for algebraic affine hypersurfaces
%J Comptes Rendus. Mathématique
%D 2022
%P 103-110
%V 360
%N G2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.254/
%R 10.5802/crmath.254
%G en
%F CRMATH_2022__360_G2_103_0
Tan, Vo Van. On the GAGA principle for algebraic affine hypersurfaces. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 103-110. doi : 10.5802/crmath.254. http://www.numdam.org/articles/10.5802/crmath.254/

[1] Banagl, Markus; Maxim, Laurentiu Deformations of singularities and the homology of intersection spaces, J. Topol. Anal., Volume 4 (2012) no. 4, p. 413--448 | DOI | MR | Zbl

[2] Dimca, Alexandru On the homology and cohomology of complete intersection with isolated singularities, Compos. Math., Volume 58 (1986), pp. 321-339 | Numdam | MR | Zbl

[3] Dimca, Alexandru Singularities and topology of hypersurfaces, Universitext, Springer, 1992 | DOI | Zbl

[4] Fossum, Robert M.; Iverson, Birger On Picard groups of algebraic fibre spaces, J. Pure Appl. Algebra, Volume 3 (1973), pp. 269-280 | DOI | MR | Zbl

[5] Greenberg, Marvin J. Lectures on algebraic topology, W. A. Benjamin, Inc., 1972

[6] Grothendieck, Alexander Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux. (SGA 2). Augmenté d’un exposé par Michèle Raynaud. Séminaire de géométrie algébrique du Bois-Marie 1962, Advanced Studies in Pure Mathematics (Amsterdam), 2, North-Holland; Masson, 1968 | Zbl

[7] Revêtements étales et groupe fondamental (SGA I) (Grothendieck, Alexander, ed.), Lecture Notes in Mathematics, 224, Springer, 1971 | DOI | Zbl

[8] Hamm, Helmut A.; Lê, Dung Tang On the Picard group for non-complete algebraic varieties, Franco-Japanese singularities. Proceedings of the 2nd Franco-Japanese singularity conference, CIRM, Marseille-Luminy, France, September 9–13, 2002 (Séminaires et Congrès), Volume 10, Société Mathématique de France, 2005, pp. 71-86 | MR | Zbl

[9] Hartshorne, Robin Ample subvarieties of Algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970 | DOI | Zbl

[10] Hartshorne, Robin Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | Zbl

[11] Howard, Alan On the homotopy groups of an affine algebraic hypersurface, Ann. Math., Volume 84 (1966), pp. 197-216 | DOI | MR | Zbl

[12] Kato, Mitsuyoshi Topology of k-regular spaces and algebraic sets, Manifolds—Tokyo 1973 (Proc. Internat. Conf. on Manifolds and Related Topics in Topology), University of Tokyo Press (1975), pp. 153-159 | MR | Zbl

[13] Kato, Mitsuyoshi Partial Poincare duality for k-regular spaces and complex algebraic sets, Topology, Volume 16 (1977) no. 1, pp. 33-50 | DOI | MR | Zbl

[14] Magid, Andy R. The Picard sequence of a fibration, Proc. Am. Math. Soc., Volume 53 (1975), pp. 37-40 | MR | Zbl

[15] Seade, José On the topology of isolated singularities in analytic spaces, Progress in Mathematics, 241, Birkhäuser, 2006 | Zbl

[16] Simha, R. R. Algebraic varieties bihomorphic to C * ×C * , Tôhoku Math. J., Volume 30 (1978), pp. 455-461 | Zbl

[17] Vo Van, Tan On the parallelism between algebraic and analytic Picard groups of algebraic affine hypersurfaces (to appear) | Numdam

[18] Voisin, Claire Théorie de Hodge et géométrie algébrique complexe, Contributions in Mathematical and Computational Sciences, 10, Société Mathématique de France, 2002 | Zbl

Cité par Sources :