Soit un groupe de Lie lorentzien ou un groupe de Lie pseudo-riemannien de type . Si admet un champ vectoriel invariant à gauche non-Killing, alors est résoluble.
Let be a Lorentzian Lie group or a pseudo-Riemannian Lie group of type . If admits a non-Killing left-invariant conformal vector field, then is solvable.
Révisé le :
Accepté le :
Publié le :
Mots clés : Conformal vector fields, Killing vector fields, Pseudo-Riemannian Lie groups, Lorenztian Lie groups
@article{CRMATH_2020__358_2_143_0, author = {Zhang, Hui and Chen, Zhiqi}, title = {Pseudo-Riemannian {Lie} groups admitting left-invariant conformal vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {143--149}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.23}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.23/} }
TY - JOUR AU - Zhang, Hui AU - Chen, Zhiqi TI - Pseudo-Riemannian Lie groups admitting left-invariant conformal vector fields JO - Comptes Rendus. Mathématique PY - 2020 SP - 143 EP - 149 VL - 358 IS - 2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.23/ DO - 10.5802/crmath.23 LA - en ID - CRMATH_2020__358_2_143_0 ER -
%0 Journal Article %A Zhang, Hui %A Chen, Zhiqi %T Pseudo-Riemannian Lie groups admitting left-invariant conformal vector fields %J Comptes Rendus. Mathématique %D 2020 %P 143-149 %V 358 %N 2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.23/ %R 10.5802/crmath.23 %G en %F CRMATH_2020__358_2_143_0
Zhang, Hui; Chen, Zhiqi. Pseudo-Riemannian Lie groups admitting left-invariant conformal vector fields. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 143-149. doi : 10.5802/crmath.23. http://www.numdam.org/articles/10.5802/crmath.23/
[1] Self-similar Lorentzian manifolds, Ann. Global Anal. Geom., Volume 3 (1985) no. 1, pp. 59-84 | DOI | MR | Zbl
[2] Conformal vector fields on Lie groups (2016) (https://arxiv.org/abs/1608.05943v2)
[3] On conformal solutions of the Yamabe flow, Arch. Math., Volume 101 (2013) no. 1, pp. 79-89 | DOI | MR | Zbl
[4] Three-dimensional homogeneous Lorentzian Yamabe solitons, Abh. Math. Semin. Univ. Hamb., Volume 82 (2012) no. 2, pp. 193-203 | DOI | MR | Zbl
[5] The geometry of closed conformal vector fields on Riemannian spaces, Bull. Braz. Math. Soc. (N.S.), Volume 42 (2011) no. 2, pp. 277-300 | DOI | MR | Zbl
[6] On the structure of gradient Yamabe solitons, Math. Res. Lett., Volume 19 (2012) no. 4, pp. 767-774 | MR | Zbl
[7] The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | DOI | MR | Zbl
[8] About pseudo-Riemannian Lichnerowicz conjecture, Transform. Groups, Volume 20 (2015) no. 4, pp. 1015-1022 | DOI | MR | Zbl
[9] A note on compact gradient Yamabe solitons, J. Math. Anal. Appl., Volume 388 (2012) no. 2, pp. 725-726 | MR | Zbl
[10] A note on automorphisms and derivations of Lie algebras, Proc. Am. Math. Soc., Volume 6 (1955), pp. 281-283 | DOI | MR | Zbl
[11] Essential conformal fields in pseudo-Riemannian geometry. II, J. Math. Sci., Tokyo, Volume 4 (1997) no. 3, pp. 649-662 | MR | Zbl
[12] Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, Volume 14 (1962), pp. 152-164 | DOI | MR | Zbl
[13] Semi-Riemannian geometry with applications to relativity, Pure and Applied Mathematics, 103, Academic Press Inc., 1983 | MR | Zbl
[14] Conformally homogeneous Lorentzian manifolds. II, Sib. Mat. Zh., Volume 33 (1992) no. 6, pp. 154-161 translation in Siberian Math. J. 33 (1992), p. 1087–1093 | MR | Zbl
[15] Conformal vector fields on Lorentzian Lie groups of dimension 4, J. Lie Theory, Volume 28 (2018) no. 3, pp. 761-769 | MR | Zbl
[16] Reine Infinitesimalgeometrie, Math. Z., Volume 26 (1918), pp. 384-411 | DOI | MR | Zbl
[17] Conformal vector fields on Lorentzian Lie groups of dimension 5 (2020) (to appear in J. Lie Theory)
Cité par Sources :