Sur le supercercle -dimensionnel , nous classifions les opérateurs différentiels linéaires -invariant agissant sur les densités tensorielles sur , où est la superalgèbre de Lie de Heisenberg. Ce résultat permet de calculer le premier espace de cohomologie différentiels -relative de la superalgèbre de Lie des champs de vecteurs de contact à coefficients dans le superespace des densités tensorielles. Pour nous etudions le premier espace de cohomologie -relative de dans le superespace de l’algèbre supercommutative des symboles pseudodifférentiels sur et dans la superalgèbre de Lie des opérateurs superpseudodifférentiels. Nous donnons explicitement les 1-cocycles engendrent ces espaces de cohomologie.
Over the -dimensional supercircle , we classify -invariant linear differential operators acting on the superspaces of weighted densities on , where is the Heisenberg Lie superalgebra. This result allows us to compute the first differential -relative cohomology of the Lie superalgebra of contact vector fields with coefficients in the superspace of weighted densities. For we investigate the first -relative cohomology space associated with the embedding of in the superspace of the supercommutative algebra of pseudodifferential symbols on and in the Lie superalgebra of superpseudodifferential operators with smooth coeffcients. We explicity give 1-cocycles spanning these cohomology spaces.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_1_45_0, author = {Khalfoun, Hafedh and Laraiedh, Ismail}, title = {The linear $\protect \mathfrak{n}(1|N)${\textendash}invariant differential operators and $\protect \mathfrak{n}(1|N)${\textendash}relative cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--58}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.22}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.22/} }
TY - JOUR AU - Khalfoun, Hafedh AU - Laraiedh, Ismail TI - The linear $\protect \mathfrak{n}(1|N)$–invariant differential operators and $\protect \mathfrak{n}(1|N)$–relative cohomology JO - Comptes Rendus. Mathématique PY - 2020 SP - 45 EP - 58 VL - 358 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.22/ DO - 10.5802/crmath.22 LA - en ID - CRMATH_2020__358_1_45_0 ER -
%0 Journal Article %A Khalfoun, Hafedh %A Laraiedh, Ismail %T The linear $\protect \mathfrak{n}(1|N)$–invariant differential operators and $\protect \mathfrak{n}(1|N)$–relative cohomology %J Comptes Rendus. Mathématique %D 2020 %P 45-58 %V 358 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.22/ %R 10.5802/crmath.22 %G en %F CRMATH_2020__358_1_45_0
Khalfoun, Hafedh; Laraiedh, Ismail. The linear $\protect \mathfrak{n}(1|N)$–invariant differential operators and $\protect \mathfrak{n}(1|N)$–relative cohomology. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 45-58. doi : 10.5802/crmath.22. http://www.numdam.org/articles/10.5802/crmath.22/
[1] On the cohomology of the Lie superalgebra of contact vectorfields on , J. Nonlinear. Math. Phys., Volume 13 (2006) no. 1-4, pp. 523-534 | Zbl
[2] Cohomology of with coefficients in , Lett. Math. Phys., Volume 81 (2007) no. 3, pp. 239-251 | Zbl
[3] The linear -invariant differential operators on weighted densities on the superspace and -relative cohomology, Int. J. Geom. Methods Mod. Phys., Volume 10 (2013) no. 4, 1320004, 9 pages | Zbl
[4] Conformal symbols and the action of Contact vector fields over the superline, J. Reine Angew. Math., Volume 633 (2009), pp. 115-163 | MR | Zbl
[5] Cohomology of infinite-dimensional Lie algebras, Plenum Press, 1986 | Zbl
[6] Differential operators on supercircle: conformally equivariant quantization and symbol calculus, Lett. Math. Phys., Volume 79 (2007) no. 1, pp. 51-65 | DOI | MR | Zbl
[7] Lie superalgebras of string theories, Acta. Math. Vietnam., Volume 26 (2001) no. 1, pp. 27-63 | MR | Zbl
[8] Invariant operators on supermanifolds and standard models, Multiple facets of quantization and supersymmetry, World Scientific, 2002, pp. 508-555 | DOI | Zbl
[9] Introduction to the theory of supermanifolds, Usp. Mat. Nauk, Volume 35 (1980) no. 1, pp. 3-57 translated in English in Russ. Math. Surv. 35 (1980), no. 1, p. 1-64 | MR | Zbl
[10] Deforming the Lie algebra of vector fields on inside the Poisson algebra on , Commun. Math. Phys., Volume 198 (1998) no. 1, pp. 97-110 | Zbl
[11] Deforming the Lie algebra of vector fields on inside the Lie algebra of pseudodifferential operators on , Adv. Math. Sci., Volume 194 (1999), pp. 211-227 | Zbl
[12] The analogs of Riemann and Penrose tensors on supermanifolds (2005) (https://arxiv.org/abs/math/0510165)
Cité par Sources :