Systèmes dynamiques
On the Billingsley dimension of Birkhoff average in the countable symbolic space
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 255-265.

We compute a lower bound of Billingsley–Hausdorff dimension, defined by Gibbs measure, of the level set related to Birkhoff average in the countable symbolic space .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.21
Classification : 28A80, 37A05, 37A35, 37B10, 37C45
Attia, Najmeddine 1 ; Selmi, Bilel 1

1 Faculty of sciences of Monastir, Department of mathematics, 5000-Monastir, Tunisia
@article{CRMATH_2020__358_3_255_0,
     author = {Attia, Najmeddine and Selmi, Bilel},
     title = {On the {Billingsley} dimension of {Birkhoff} average in the countable symbolic space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {255--265},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.21},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.21/}
}
TY  - JOUR
AU  - Attia, Najmeddine
AU  - Selmi, Bilel
TI  - On the Billingsley dimension of Birkhoff average in the countable symbolic space
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 255
EP  - 265
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.21/
DO  - 10.5802/crmath.21
LA  - en
ID  - CRMATH_2020__358_3_255_0
ER  - 
%0 Journal Article
%A Attia, Najmeddine
%A Selmi, Bilel
%T On the Billingsley dimension of Birkhoff average in the countable symbolic space
%J Comptes Rendus. Mathématique
%D 2020
%P 255-265
%V 358
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.21/
%R 10.5802/crmath.21
%G en
%F CRMATH_2020__358_3_255_0
Attia, Najmeddine; Selmi, Bilel. On the Billingsley dimension of Birkhoff average in the countable symbolic space. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 255-265. doi : 10.5802/crmath.21. http://www.numdam.org/articles/10.5802/crmath.21/

[1] Barral, Julien; Mensi, Mounir Multifractal analysis of Birkhoff averages on ‘self-affine’ symbolic spaces, Nonlinearity (2008), pp. 2409-2425 | DOI | MR | Zbl

[2] Barreira, Luis; Li, Jinjun; Valls, Claudia Full shifts and irregular sets, São Paulo J. Math. Sci., Volume 6 (2012) no. 2, pp. 135-143 | DOI | MR | Zbl

[3] Billingsley, Patrick Ergodic theory and information, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1965 | Zbl

[4] Bowen, Rufus Topological entropy for noncompact set, Trans. Am. Math. Soc., Volume 184 (1973), pp. 125-136 | DOI | MR | Zbl

[5] Cajar, Helmut Billingsley Dimension in probability spaces, Lecture Notes in Mathematics, 892, Springer, 1981 | MR | Zbl

[6] Climenhaga, Vaughn Thermodynamic approach to multifractal analysis, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 5, pp. 1409-1450 | DOI | MR | Zbl

[7] Dong, Yiwei; Tian, Xueting Multifractal Analysis of The New Level sets (2015) (https://arxiv.org/abs/1510.06514v1)

[8] Fan, Ai-Hua; Feng, De-Jun On the Distribution of Long-Term Time Averages on Symbolic Space, J. Stat. Phys., Volume 99 (2000) no. 3-4, pp. 813-856 | DOI | MR | Zbl

[9] Fan, Ai-Hua; Feng, De-Jun; Wu, Jun Recurrence, dimension and entropy, J. Lond. Math. Soc., Volume 64 (2001) no. 1, pp. 229-244 | DOI | MR | Zbl

[10] Fan, Ai-Hua; Jordan, Thomas; Liao, Lingmin; Rams, Michał Multifractal analysis for expanding interval maps with infinitely many branches, Trans. Am. Math. Soc., Volume 367 (2015) no. 3, pp. 1847-1870 | DOI | MR | Zbl

[11] Fan, Ai-Hua; Li, Ming-Tian; Ma, Ji-Hua Generic points of shift-invariant measures in the countable symbolic space, Math. Proc. Camb. Philos. Soc., Volume 166 (2019) no. 2, pp. 381-413 | DOI | MR | Zbl

[12] Fan, Ai-Hua; Liao, Lingmin; Ma, Ji-Hua On the frequency of partial quotients of regular continued fractions, Math. Proc. Camb. Philos. Soc., Volume 148 (2010) no. 1, pp. 179-192 | DOI | MR | Zbl

[13] Fan, Ai-Hua; Liao, Lingmin; Ma, Ji-Hua Level sets of multiple ergodic averages, Monatsh. Math., Volume 168 (2012) no. 1, pp. 17-26 | DOI | MR | Zbl

[14] Fan, Ai-Hua; Liao, Lingmin; Ma, Ji-Hua; Wang, Baowei Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, Volume 23 (2010) no. 5, pp. 1185-1197 | DOI | MR | Zbl

[15] Fan, Ai-Hua; Liao, Lingmin; Peyrière, Jacques Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst., Volume 21 (2008) no. 4, pp. 1103-1128 | DOI | MR | Zbl

[16] Fan, Ai-Hua; Liao, Lingmin; Wang, Baowei; Wu, Jun On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dyn. Syst., Volume 29 (2009) no. 1, pp. 73-109 | DOI | MR | Zbl

[17] Fan, Ai-Hua; Schmeling, Jörg On fast Birkhoff averaging, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 3, pp. 443-467 | DOI | MR | Zbl

[18] Feng, De-Jun; Lau, Ka-Sing; Wu, Jun Ergodic Limits on the Conformal Repellers, Adv. Math., Volume 169 (2002) no. 1, pp. 58-91 | DOI | MR | Zbl

[19] Feng, De-Jun; Shu, Lin Multifractal analysis for disintegrations of Gibbs measures and conditional Birkhoff averages, Ergodic Theory Dyn. Syst., Volume 29 (2009) no. 3, pp. 885-918 | DOI | MR | Zbl

[20] Glasner, Eli; Weiss, Benjamin On the interplay between measurable and topological dynamics, Handbook of dynamical systems. Volume 1B, Volume 1, Elsevier, 2006, pp. 597-648 | Zbl

[21] Käenmäki, Antti; Reeve, Henry W. J. Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets, J. Fractal Geom., Volume 1 (2014) no. 1, pp. 83-152 | DOI | MR | Zbl

[22] Li, Ming-Tian; Ma, Ji-Hua On a lemma of Bowen, Acta Math. Sci., Ser. B, Engl. Ed., Volume 34 (2014) no. 3, pp. 932-940 | MR | Zbl

[23] Li, Ming-Tian; Ma, Ji-Hua Bowen lemma in the countable symbolic space, Entropy, Volume 19 (2017) no. 10, p. 532 | DOI | MR

[24] Liao, Lingmin; Ma, Ji-Hua; Wang, Baowei Dimension of some non-normal continued fraction sets, Math. Proc. Camb. Philos. Soc., Volume 145 (2008) no. 1, pp. 215-225 | DOI | MR | Zbl

[25] Pesin, Yakov; Weiss, Howard The multifractal analysis of Birkhoff averages and large deviations, Global analysis of dynamical systems, Institute of Physics Publishing, 2001, pp. 419-431 | Zbl

[26] Pfister, Charles-Edouard; Sullivan, Wayne G. Large deviations estimates for dynamical systems without the specification property, Nonlinearity, Volume 18 (2005) no. 1, pp. 237-261 | DOI | MR | Zbl

[27] Sarig, Omri Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dyn. Syst., Volume 19 (1999) no. 6, pp. 1565-1593 | DOI | MR | Zbl

[28] Sarig, Omri Existence of Gibbs measures for countable Markov shifts, Proc. Am. Math. Soc., Volume 131 (2003) no. 6, p. 1751-1558 | DOI | MR | Zbl

[29] Sarig, Omri Lecture notes on thermodynamic formalism for topological markov shifts (2009) (http://www.wisdom.weizmann.ac.il/~sarigo/TDFnotes.pdf)

Cité par Sources :