Soit un corps gauche de dimension finie sur son centre . Nous résolvons le Problème Inverse de Galois sur le corps des fractions de l’anneau des fonctions polynomiales en la variable et à coefficients dans , si contient un corps ample.
Let be a skew field of finite dimension over its center . We solve the Inverse Galois Problem over the field of fractions of the ring of polynomial functions over in the variable , if contains an ample field.
Accepté le :
Publié le :
@article{CRMATH_2020__358_7_785_0, author = {Alon, Gil and Legrand, Fran\c{c}ois and Paran, Elad}, title = {Galois groups over rational function fields over skew fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--790}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.20}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.20/} }
TY - JOUR AU - Alon, Gil AU - Legrand, François AU - Paran, Elad TI - Galois groups over rational function fields over skew fields JO - Comptes Rendus. Mathématique PY - 2020 SP - 785 EP - 790 VL - 358 IS - 7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.20/ DO - 10.5802/crmath.20 LA - en ID - CRMATH_2020__358_7_785_0 ER -
%0 Journal Article %A Alon, Gil %A Legrand, François %A Paran, Elad %T Galois groups over rational function fields over skew fields %J Comptes Rendus. Mathématique %D 2020 %P 785-790 %V 358 %N 7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.20/ %R 10.5802/crmath.20 %G en %F CRMATH_2020__358_7_785_0
Alon, Gil; Legrand, François; Paran, Elad. Galois groups over rational function fields over skew fields. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 785-790. doi : 10.5802/crmath.20. http://www.numdam.org/articles/10.5802/crmath.20/
[1] A quaternionic Nullstellensatz, J. Pure Appl. Algebra, Volume 225 (2020) no. 4, 106572 | DOI | MR | Zbl
[2] Open problems in the theory of ample fields, Geometric and differential Galois theories (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 1-11
[3] Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, 57, Cambridge University Press, 1995, xvi+500 pages | Zbl
[4] Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale, J. Pure Appl. Algebra, Volume 224 (2020) no. 5, 106240, 13 pages | DOI | Zbl
[5] An Introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 61, Cambridge University Press, 2004, xxiv+344 pages | MR | Zbl
[6] On the zeros of polynomials over division rings, Trans. Am. Math. Soc., Volume 116 (1965), pp. 218-226 | DOI | MR
[7] Algebraic patching, Springer Monographs in Mathematics, Springer, 2011, xxiv+290 pages | Zbl
[8] Theory of non-commutative polynomials, Ann. Math., Volume 34 (1933) no. 3, pp. 480-508 | MR | Zbl
[9] Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | MR | Zbl
[10] Little survey on large fields - old & new, Valuation theory in interaction (EMS Series of Congress Reports), European Mathematical Society (2014), pp. 432-463 | Zbl
[11] Set theory. An introduction, Birkhäuser, 1995, x+167 pages | MR | Zbl
[12] On the fundamental theorem of algebra for polynomial equations over real composition algebras, J. Pure Appl. Algebra, Volume 218 (2014) no. 7, pp. 1195-1205 | DOI | MR | Zbl
Cité par Sources :