Géométrie
An inequality for the minimum affine curvature of a plane curve
[Une inégalité sur la courbure affine minimale par le flot de raccourcissement des courbes]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 139-142.

Comme application du flot de raccourcissement des courbes, nous prouverons une inégalité sur la courbure affine minimale d’une courbe fermée simple lisse dans le plan euclidien.

As an application of the affine curve shortening flow, we will prove an inequality for minimum affine curvature of a smooth simple closed curve in the Euclidean plane.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.19
Classification : 52A40, 53A04, 53C44
Yang, Yunlong 1

1 School of Science, Dalian Maritime University, Dalian, 116026, People’s Republic of China
@article{CRMATH_2020__358_2_139_0,
     author = {Yang, Yunlong},
     title = {An inequality for the minimum affine curvature of a plane curve},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {139--142},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.19},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.19/}
}
TY  - JOUR
AU  - Yang, Yunlong
TI  - An inequality for the minimum affine curvature of a plane curve
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 139
EP  - 142
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.19/
DO  - 10.5802/crmath.19
LA  - en
ID  - CRMATH_2020__358_2_139_0
ER  - 
%0 Journal Article
%A Yang, Yunlong
%T An inequality for the minimum affine curvature of a plane curve
%J Comptes Rendus. Mathématique
%D 2020
%P 139-142
%V 358
%N 2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.19/
%R 10.5802/crmath.19
%G en
%F CRMATH_2020__358_2_139_0
Yang, Yunlong. An inequality for the minimum affine curvature of a plane curve. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 139-142. doi : 10.5802/crmath.19. http://www.numdam.org/articles/10.5802/crmath.19/

[1] Ai, Jun; Chou, Kai-Seng; Wei, Juncheng Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differ. Equ., Volume 13 (2001) no. 3, pp. 311-337 | MR | Zbl

[2] Alvarez, Luis; Guichard, Frédéric; Lions, Pierre-Louis; Morel, Jean- Michel Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal., Volume 132 (1993) no. 3, pp. 199-257 | DOI | MR | Zbl

[3] Andrews, Ben Contraction of convex hypersurfaces by their affine normal, J. Differ. Geom., Volume 43 (1996) no. 2, pp. 207-230 | DOI | MR | Zbl

[4] Andrews, Ben The affine curve-lengthening flow, J. Reine Angew. Math., Volume 506 (1999), pp. 48-83 | MR | Zbl

[5] Angenent, Sigurd; Sapiro, Guillermo; Tannenbaum, Allen On the affine heat equation for non-convex curves, J. Am. Math. Soc., Volume 11 (1998) no. 3, pp. 601-634 | DOI | MR | Zbl

[6] Chou, Kai-Seng; Zhu, Xi-Ping The Curve Shortening Problem, Chapman & Hall/CRC, 2001 | Zbl

[7] Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina On the maximal mean curvature of a smooth surface, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 9, pp. 891-895 | DOI | MR | Zbl

[8] Gage, M.; Hamilton, Richard S. The heat equation shrinking convex plane curves, J. Differ. Geom., Volume 23 (1986), pp. 69-96 | DOI | MR | Zbl

[9] Grayson, Matthew A. The heat equation shrinks embedded plane curves to round points, J. Differ. Geom., Volume 26 (1987), pp. 285-314 | DOI | MR | Zbl

[10] Hamilton, Richard S. Four-manifolds with positive curvature operator, J. Differ. Geom., Volume 24 (1986), pp. 153-179 | DOI | MR | Zbl

[11] Howard, Ralph; Treibergs, Andrejs A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mt. J. Math., Volume 25 (1995) no. 2, pp. 635-684 | DOI | MR | Zbl

[12] Ivaki, Mohammad N. Centro-affine curvature flows on centrally symmetric convex curves, Trans. Am. Math. Soc., Volume 366 (2014) no. 11, pp. 5671-5692 | DOI | MR | Zbl

[13] Jiang, Meiyue; Wang, Liping; Wei, Juncheng 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 3-4, pp. 535-565 | DOI | MR | Zbl

[14] Olver, Peter J.; Sapiro, Guillermo; Tannenbaum, Allen Differential invariant signatures and flows in computer vision: A symmetry group approach, Geometry-Driven Diffusion in Computer Vision (Computational Imaging and Vision), Volume 1, Springer, 1994, pp. 205-306

[15] Pankrashkin, Konstantin An inequality for the maximum curvature through a geometric flow, Arch. Math., Volume 105 (2015) no. 3, pp. 297-300 | DOI | MR | Zbl

[16] Pankrashkin, Konstantin; Popoff, Nicolas Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1947-1961 | DOI | MR | Zbl

[17] Pestov, G.; Ionin, Vladimir On the largest possible circle imbedded in a given closed curve, Dokl. Akad. Nauk SSSR, Volume 127 (1959), pp. 1170-1172 | MR | Zbl

[18] Sapiro, Guillermo; Tannenbaum, Allen On affine plane curve evolution, J. Funct. Anal., Volume 119 (1994) no. 1, pp. 79-120 | DOI | MR | Zbl

[19] Su, Buchin Affine Differential Geometry, Gordon and Breach, Science Publishers, 1983 | Zbl

Cité par Sources :